We will prove ∀X, Obj X → comp (T0 (T0 (T0 X))) (T0 (T0 X)) (T0 X) (mu X) (T1 (T0 (T0 X)) (T0 X) (mu X)) = comp (T0 (T0 (T0 X))) (T0 (T0 X)) (T0 X) (mu X) (mu (T0 X)).
Let X be given.
Assume HX.
We prove the intermediate claim LFX: Obj' (F0 X).
Apply HF1 to the current goal.
An exact proof term for the current goal is HX.
We prove the intermediate claim LTX: Obj (T0 X).
An exact proof term for the current goal is HT01 X HX.
We prove the intermediate claim LFTX: Obj' (F0 (T0 X)).
Apply HF1 to the current goal.
An exact proof term for the current goal is LTX.
We prove the intermediate claim LTTX: Obj (T0 (T0 X)).
An exact proof term for the current goal is HT01 (T0 X) LTX.
We prove the intermediate claim LFTTX: Obj' (F0 (T0 (T0 X))).
Apply HF1 to the current goal.
An exact proof term for the current goal is LTTX.
We prove the intermediate claim LepsFX: Hom' (F0 (T0 X)) (F0 X) (eps (F0 X)).
An exact proof term for the current goal is Heps1 (F0 X) LFX.
We prove the intermediate claim LmuX: Hom (T0 (T0 X)) (T0 X) (mu X).
An exact proof term for the current goal is HG2 (F0 (T0 X)) (F0 X) (eps (F0 X)) LFTX LFX LepsFX.
We prove the intermediate claim LFmuX: Hom' (F0 (T0 (T0 X))) (F0 (T0 X)) (F1 (T0 (T0 X)) (T0 X) (mu X)).
An exact proof term for the current goal is HF2 (T0 (T0 X)) (T0 X) (mu X) LTTX LTX LmuX.
We will prove comp (T0 (T0 (T0 X))) (T0 (T0 X)) (T0 X) (mu X) (T1 (T0 (T0 X)) (T0 X) (mu X)) = comp (T0 (T0 (T0 X))) (T0 (T0 X)) (T0 X) (mu X) (mu (T0 X)).
Use transitivity with G1 (F0 (T0 (T0 X))) (F0 X) (comp' (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (eps (F0 X)) (F1 (T0 (T0 X)) (T0 X) (mu X))), and G1 (F0 (T0 (T0 X))) (F0 X) (comp' (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (eps (F0 X)) (eps (F0 (T0 X)))).
We will prove comp (T0 (T0 (T0 X))) (T0 (T0 X)) (T0 X) (mu X) (T1 (T0 (T0 X)) (T0 X) (mu X)) = G1 (F0 (T0 (T0 X))) (F0 X) (comp' (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (eps (F0 X)) (F1 (T0 (T0 X)) (T0 X) (mu X))).
Use symmetry.
An exact proof term for the current goal is HG4 (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (F1 (T0 (T0 X)) (T0 X) (mu X)) (eps (F0 X)) LFTTX LFTX LFX LFmuX LepsFX.
We will prove G1 (F0 (T0 (T0 X))) (F0 X) (comp' (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (eps (F0 X)) (F1 (T0 (T0 X)) (T0 X) (mu X))) = G1 (F0 (T0 (T0 X))) (F0 X) (comp' (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (eps (F0 X)) (eps (F0 (T0 X)))).
Use f_equal.
Use symmetry.
We will prove comp' (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (eps (F0 X)) (eps (F0 (T0 X))) = comp' (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (eps (F0 X)) (F1 (T0 (T0 X)) (T0 X) (mu X)).
An exact proof term for the current goal is Heps2 (F0 (T0 X)) (F0 X) (eps (F0 X)) LFTX LFX LepsFX.
We will prove G1 (F0 (T0 (T0 X))) (F0 X) (comp' (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (eps (F0 X)) (eps (F0 (T0 X)))) = comp (T0 (T0 (T0 X))) (T0 (T0 X)) (T0 X) (mu X) (mu (T0 X)).
An exact proof term for the current goal is HG4 (F0 (T0 (T0 X))) (F0 (T0 X)) (F0 X) (eps (F0 (T0 X))) (eps (F0 X)) LFTTX LFTX LFX (Heps1 (F0 (T0 X)) LFTX) LepsFX.
We will prove ∀X, Obj X → comp (T0 X) (T0 (T0 X)) (T0 X) (mu X) (eta (T0 X)) = id (T0 X).
Let X be given.
Assume HX.
We will prove comp (G0 (F0 X)) (G0 (F0 (G0 (F0 X)))) (G0 (F0 X)) (G1 (F0 (G0 (F0 X))) (F0 X) (eps (F0 X))) (eta (G0 (F0 X))) = id (G0 (F0 X)).
An exact proof term for the current goal is HA2 (F0 X) (HF1 X HX).
We will prove ∀X, Obj X → comp (T0 X) (T0 (T0 X)) (T0 X) (mu X) (T1 X (T0 X) (eta X)) = id (T0 X).
Let X be given.
Assume HX.
We will prove comp (G0 (F0 X)) (G0 (F0 (T0 X))) (G0 (F0 X)) (G1 (F0 (T0 X)) (F0 X) (eps (F0 X))) (G1 (F0 X) (F0 (T0 X)) (F1 X (T0 X) (eta X))) = id (T0 X).
We prove the intermediate claim LFX: Obj' (F0 X).
Apply HF1 to the current goal.
An exact proof term for the current goal is HX.
We prove the intermediate claim LTX: Obj (T0 X).
An exact proof term for the current goal is HT01 X HX.
We prove the intermediate claim LFTX: Obj' (F0 (T0 X)).
Apply HF1 to the current goal.
An exact proof term for the current goal is LTX.
Use transitivity with G1 (F0 X) (F0 X) (comp' (F0 X) (F0 (T0 X)) (F0 X) (eps (F0 X)) (F1 X (T0 X) (eta X))), and G1 (F0 X) (F0 X) (id' (F0 X)).
We will prove comp (G0 (F0 X)) (G0 (F0 (T0 X))) (G0 (F0 X)) (G1 (F0 (T0 X)) (F0 X) (eps (F0 X))) (G1 (F0 X) (F0 (T0 X)) (F1 X (T0 X) (eta X))) = G1 (F0 X) (F0 X) (comp' (F0 X) (F0 (T0 X)) (F0 X) (eps (F0 X)) (F1 X (T0 X) (eta X))).
Use symmetry.
Apply HG4 (F0 X) (F0 (T0 X)) (F0 X) (F1 X (T0 X) (eta X)) (eps (F0 X)) to the current goal.
An exact proof term for the current goal is LFX.
An exact proof term for the current goal is LFTX.
An exact proof term for the current goal is LFX.
We will prove Hom' (F0 X) (F0 (T0 X)) (F1 X (T0 X) (eta X)).
An exact proof term for the current goal is HF2 X (T0 X) (eta X) HX LTX (Heta1 X HX).
We will prove Hom' (F0 (G0 (F0 X))) (F0 X) (eps (F0 X)).
An exact proof term for the current goal is Heps1 (F0 X) (HF1 X HX).
We will prove G1 (F0 X) (F0 X) (comp' (F0 X) (F0 (T0 X)) (F0 X) (eps (F0 X)) (F1 X (T0 X) (eta X))) = G1 (F0 X) (F0 X) (id' (F0 X)).
Use f_equal.
An exact proof term for the current goal is HA1 X HX.
We will prove G1 (F0 X) (F0 X) (id' (F0 X)) = id (T0 X).
An exact proof term for the current goal is HG3 (F0 X) LFX.
∎