Theorem.
(
MetaCat_struct_e
)
MetaCat
struct_e
Hom_struct_e
struct_id
struct_comp
In Proofgold the corresponding term root is
40d0ba...
and proposition id is
5aae9b...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_e_gen
struct_e
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_e_Forgetful
)
MetaFunctor
struct_e
Hom_struct_e
struct_id
struct_comp
(
λ_ ⇒
True
)
SetHom
(
λX ⇒
lam_id
X
)
(
λX Y Z f g ⇒
(
lam_comp
X
f
g
)
)
(
λX ⇒
X
0
)
(
λX Y f ⇒
f
)
In Proofgold the corresponding term root is
4c2b40...
and proposition id is
a6c491...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_e_Forgetful_gen
struct_e
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_p
)
MetaCat
struct_p
Hom_struct_p
struct_id
struct_comp
In Proofgold the corresponding term root is
edb0bb...
and proposition id is
caa5e1...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_p_gen
struct_p
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_p_Forgetful
)
MetaFunctor
struct_p
Hom_struct_p
struct_id
struct_comp
(
λ_ ⇒
True
)
SetHom
(
λX ⇒
lam_id
X
)
(
λX Y Z f g ⇒
(
lam_comp
X
f
g
)
)
(
λX ⇒
X
0
)
(
λX Y f ⇒
f
)
In Proofgold the corresponding term root is
318901...
and proposition id is
40bbd4...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_p_Forgetful_gen
struct_p
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_u
)
MetaCat
struct_u
Hom_struct_u
struct_id
struct_comp
In Proofgold the corresponding term root is
5de126...
and proposition id is
73eabf...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_u_gen
struct_u
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_u_Forgetful
)
MetaFunctor
struct_u
Hom_struct_u
struct_id
struct_comp
(
λ_ ⇒
True
)
SetHom
(
λX ⇒
lam_id
X
)
(
λX Y Z f g ⇒
(
lam_comp
X
f
g
)
)
(
λX ⇒
X
0
)
(
λX Y f ⇒
f
)
In Proofgold the corresponding term root is
b3eb4d...
and proposition id is
0032df...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_u_Forgetful_gen
struct_u
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_r
)
MetaCat
struct_r
Hom_struct_r
struct_id
struct_comp
In Proofgold the corresponding term root is
c743d5...
and proposition id is
6955f4...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_r_gen
struct_r
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_r_Forgetful
)
MetaFunctor
struct_r
Hom_struct_r
struct_id
struct_comp
(
λ_ ⇒
True
)
SetHom
(
λX ⇒
lam_id
X
)
(
λX Y Z f g ⇒
(
lam_comp
X
f
g
)
)
(
λX ⇒
X
0
)
(
λX Y f ⇒
f
)
In Proofgold the corresponding term root is
697cf9...
and proposition id is
07626c...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_r_Forgetful_gen
struct_r
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_b
)
MetaCat
struct_b
Hom_struct_b
struct_id
struct_comp
In Proofgold the corresponding term root is
cb8d37...
and proposition id is
c55c1b...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_b_gen
struct_b
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_b_Forgetful
)
MetaFunctor
struct_b
Hom_struct_b
struct_id
struct_comp
(
λ_ ⇒
True
)
SetHom
(
λX ⇒
lam_id
X
)
(
λX Y Z f g ⇒
(
lam_comp
X
f
g
)
)
(
λX ⇒
X
0
)
(
λX Y f ⇒
f
)
In Proofgold the corresponding term root is
5098f3...
and proposition id is
dda03f...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_b_Forgetful_gen
struct_b
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_c
)
MetaCat
struct_c
Hom_struct_c
struct_id
struct_comp
In Proofgold the corresponding term root is
4f44ef...
and proposition id is
ed6b54...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_c_gen
struct_c
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_c_Forgetful
)
MetaFunctor
struct_c
Hom_struct_c
struct_id
struct_comp
(
λ_ ⇒
True
)
SetHom
(
λX ⇒
lam_id
X
)
(
λX Y Z f g ⇒
(
lam_comp
X
f
g
)
)
(
λX ⇒
X
0
)
(
λX Y f ⇒
f
)
In Proofgold the corresponding term root is
f3e562...
and proposition id is
803c1d...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_c_Forgetful_gen
struct_c
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_b_b_e
)
MetaCat
struct_b_b_e
Hom_struct_b_b_e
struct_id
struct_comp
In Proofgold the corresponding term root is
75b2b1...
and proposition id is
8af1e4...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_b_b_e_gen
struct_b_b_e
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_b_b_e_Forgetful
)
MetaFunctor
struct_b_b_e
Hom_struct_b_b_e
struct_id
struct_comp
(
λ_ ⇒
True
)
SetHom
(
λX ⇒
lam_id
X
)
(
λX Y Z f g ⇒
(
lam_comp
X
f
g
)
)
(
λX ⇒
X
0
)
(
λX Y f ⇒
f
)
In Proofgold the corresponding term root is
209560...
and proposition id is
0a59e8...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_b_b_e_Forgetful_gen
struct_b_b_e
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_b_b_e_e
)
MetaCat
struct_b_b_e_e
Hom_struct_b_b_e_e
struct_id
struct_comp
In Proofgold the corresponding term root is
feeda8...
and proposition id is
e84d1b...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_b_b_e_e_gen
struct_b_b_e_e
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_b_b_e_e_Forgetful
)
MetaFunctor
struct_b_b_e_e
Hom_struct_b_b_e_e
struct_id
struct_comp
(
λ_ ⇒
True
)
SetHom
(
λX ⇒
lam_id
X
)
(
λX Y Z f g ⇒
(
lam_comp
X
f
g
)
)
(
λX ⇒
X
0
)
(
λX Y f ⇒
f
)
In Proofgold the corresponding term root is
d90dfc...
and proposition id is
4b8c93...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_b_b_e_e_Forgetful_gen
struct_b_b_e_e
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_b_b_r_e_e
)
MetaCat
struct_b_b_r_e_e
Hom_struct_b_b_r_e_e
struct_id
struct_comp
In Proofgold the corresponding term root is
e1b7b4...
and proposition id is
d5a625...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_b_b_r_e_e_gen
struct_b_b_r_e_e
(
λX H ⇒
H
)
.
∎
Theorem.
(
MetaCat_struct_b_b_r_e_e_Forgetful
)
MetaFunctor
struct_b_b_r_e_e
Hom_struct_b_b_r_e_e
struct_id
struct_comp
(
λ_ ⇒
True
)
SetHom
(
λX ⇒
lam_id
X
)
(
λX Y Z f g ⇒
(
lam_comp
X
f
g
)
)
(
λX ⇒
X
0
)
(
λX Y f ⇒
f
)
In Proofgold the corresponding term root is
dcdc54...
and proposition id is
e97865...
Proof:
An
exact
proof term for the current goal is
MetaCat_struct_b_b_r_e_e_Forgetful_gen
struct_b_b_r_e_e
(
λX H ⇒
H
)
.
∎