Theorem. (MetaCat_struct_e)
MetaCat struct_e Hom_struct_e struct_id struct_comp
Proof:
An exact proof term for the current goal is MetaCat_struct_e_gen struct_e (λX H ⇒ H).
Theorem. (MetaCat_struct_e_Forgetful)
MetaFunctor struct_e Hom_struct_e struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
An exact proof term for the current goal is MetaCat_struct_e_Forgetful_gen struct_e (λX H ⇒ H).
Theorem. (MetaCat_struct_p)
MetaCat struct_p Hom_struct_p struct_id struct_comp
Proof:
An exact proof term for the current goal is MetaCat_struct_p_gen struct_p (λX H ⇒ H).
Theorem. (MetaCat_struct_p_Forgetful)
MetaFunctor struct_p Hom_struct_p struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
An exact proof term for the current goal is MetaCat_struct_p_Forgetful_gen struct_p (λX H ⇒ H).
Theorem. (MetaCat_struct_u)
MetaCat struct_u Hom_struct_u struct_id struct_comp
Proof:
An exact proof term for the current goal is MetaCat_struct_u_gen struct_u (λX H ⇒ H).
Theorem. (MetaCat_struct_u_Forgetful)
MetaFunctor struct_u Hom_struct_u struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
An exact proof term for the current goal is MetaCat_struct_u_Forgetful_gen struct_u (λX H ⇒ H).
Theorem. (MetaCat_struct_r)
MetaCat struct_r Hom_struct_r struct_id struct_comp
Proof:
An exact proof term for the current goal is MetaCat_struct_r_gen struct_r (λX H ⇒ H).
Theorem. (MetaCat_struct_r_Forgetful)
MetaFunctor struct_r Hom_struct_r struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
An exact proof term for the current goal is MetaCat_struct_r_Forgetful_gen struct_r (λX H ⇒ H).
Theorem. (MetaCat_struct_b)
MetaCat struct_b Hom_struct_b struct_id struct_comp
Proof:
An exact proof term for the current goal is MetaCat_struct_b_gen struct_b (λX H ⇒ H).
Theorem. (MetaCat_struct_b_Forgetful)
MetaFunctor struct_b Hom_struct_b struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
An exact proof term for the current goal is MetaCat_struct_b_Forgetful_gen struct_b (λX H ⇒ H).
Theorem. (MetaCat_struct_c)
MetaCat struct_c Hom_struct_c struct_id struct_comp
Proof:
An exact proof term for the current goal is MetaCat_struct_c_gen struct_c (λX H ⇒ H).
Theorem. (MetaCat_struct_c_Forgetful)
MetaFunctor struct_c Hom_struct_c struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
An exact proof term for the current goal is MetaCat_struct_c_Forgetful_gen struct_c (λX H ⇒ H).
Theorem. (MetaCat_struct_b_b_e)
MetaCat struct_b_b_e Hom_struct_b_b_e struct_id struct_comp
Proof:
An exact proof term for the current goal is MetaCat_struct_b_b_e_gen struct_b_b_e (λX H ⇒ H).
Theorem. (MetaCat_struct_b_b_e_Forgetful)
MetaFunctor struct_b_b_e Hom_struct_b_b_e struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
An exact proof term for the current goal is MetaCat_struct_b_b_e_Forgetful_gen struct_b_b_e (λX H ⇒ H).
Theorem. (MetaCat_struct_b_b_e_e)
MetaCat struct_b_b_e_e Hom_struct_b_b_e_e struct_id struct_comp
Proof:
An exact proof term for the current goal is MetaCat_struct_b_b_e_e_gen struct_b_b_e_e (λX H ⇒ H).
Theorem. (MetaCat_struct_b_b_e_e_Forgetful)
MetaFunctor struct_b_b_e_e Hom_struct_b_b_e_e struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
An exact proof term for the current goal is MetaCat_struct_b_b_e_e_Forgetful_gen struct_b_b_e_e (λX H ⇒ H).
Theorem. (MetaCat_struct_b_b_r_e_e)
MetaCat struct_b_b_r_e_e Hom_struct_b_b_r_e_e struct_id struct_comp
Proof:
An exact proof term for the current goal is MetaCat_struct_b_b_r_e_e_gen struct_b_b_r_e_e (λX H ⇒ H).
Theorem. (MetaCat_struct_b_b_r_e_e_Forgetful)
MetaFunctor struct_b_b_r_e_e Hom_struct_b_b_r_e_e struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
An exact proof term for the current goal is MetaCat_struct_b_b_r_e_e_Forgetful_gen struct_b_b_r_e_e (λX H ⇒ H).