∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_u_injHom_struct_ustruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is 1c7f4e... and proposition id is d74c33...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_u_injHom_struct_ustruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is d16054... and proposition id is 501bf4...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_u_injHom_struct_ustruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 12ca82... and proposition id is 3807d8...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_u_injHom_struct_ustruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is c671ed... and proposition id is 0ba1a5...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_u_injHom_struct_ustruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 7ae3ec... and proposition id is abb6af...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_u_injHom_struct_ustruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is 73858b... and proposition id is 40b2c0...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_u_injHom_struct_ustruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is 59f543... and proposition id is 02f51b...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_u_injHom_struct_ustruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is 67602a... and proposition id is e753ae...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_u_injHom_struct_ustruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 9cef1d... and proposition id is 8822b0...