∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_u_idemHom_struct_ustruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is 23071a... and proposition id is 18e31e...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_u_idemHom_struct_ustruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 4dd455... and proposition id is f2a7fc...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_u_idemHom_struct_ustruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 3a3d04... and proposition id is fdf827...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_u_idemHom_struct_ustruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is b2b78f... and proposition id is 877ff5...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_u_idemHom_struct_ustruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 4dcd45... and proposition id is 685b03...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_u_idemHom_struct_ustruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is b10396... and proposition id is 5b67a3...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_u_idemHom_struct_ustruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is ef6ef4... and proposition id is 2b51e7...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_u_idemHom_struct_ustruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is 1364e8... and proposition id is 7c0d04...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_u_idemHom_struct_ustruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 533ea1... and proposition id is 49304d...