∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_r_wellordHom_struct_rstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is 70ffe1... and proposition id is 174587...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_r_wellordHom_struct_rstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 088808... and proposition id is 71d592...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_r_wellordHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 3692d7... and proposition id is 10b922...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_r_wellordHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 1016d0... and proposition id is d27a86...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_r_wellordHom_struct_rstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is c1d3de... and proposition id is d4e5cd...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_r_wellordHom_struct_rstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is fced61... and proposition id is ee3b38...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_r_wellordHom_struct_rstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is 44f225... and proposition id is 9460db...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_r_wellordHom_struct_rstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is 7fa73e... and proposition id is d2cf43...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_r_wellordHom_struct_rstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 7d926b... and proposition id is 538f6b...