Definition. We define struct_r_per to be λX ⇒ struct_rX ∧ unpack_r_oX(λX' r ⇒ (∀x y ∈ X', rxy → ryx) ∧ (∀x y z ∈ X', rxy → ryz → rxz)) of type set → prop.
In Proofgold the corresponding term root is 3a8be9... and object id is 2f640c...
∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_r_perHom_struct_rstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is aabb17... and proposition id is 5de9f8...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_r_perHom_struct_rstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 7424d1... and proposition id is b370d6...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_r_perHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 62c8f4... and proposition id is d1bd9e...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_r_perHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is da50e7... and proposition id is 57f509...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_r_perHom_struct_rstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is bd83f4... and proposition id is e89213...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_r_perHom_struct_rstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is 9f0f80... and proposition id is 440674...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_r_perHom_struct_rstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is 88a055... and proposition id is 97ee86...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_r_perHom_struct_rstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is ad8528... and proposition id is 91d7b9...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_r_perHom_struct_rstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 94e18c... and proposition id is 8dcfe2...