Definition. We define struct_r_partialord to be λX ⇒ struct_rX ∧ unpack_r_oX(λX' r ⇒ (∀x ∈ X', ¬ rxx) ∧ (∀x y z ∈ X', rxy → ryz → rxz)) of type set → prop.
In Proofgold the corresponding term root is 64673b... and object id is adb47f...
∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_r_partialordHom_struct_rstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is 3f5001... and proposition id is 8a2ce9...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_r_partialordHom_struct_rstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 7acdd2... and proposition id is 42715c...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_r_partialordHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 2c8b6e... and proposition id is e18a26...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_r_partialordHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 14b524... and proposition id is 3d0dd4...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_r_partialordHom_struct_rstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 099974... and proposition id is dab5c8...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_r_partialordHom_struct_rstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is de0ba5... and proposition id is d1a34e...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_r_partialordHom_struct_rstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is ebb939... and proposition id is f1e9d8...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_r_partialordHom_struct_rstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is d956c5... and proposition id is 21b6c9...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_r_partialordHom_struct_rstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 921e16... and proposition id is 123cf0...