∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_r_graphHom_struct_rstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is ae33e3... and proposition id is ad517c...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_r_graphHom_struct_rstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 3c8643... and proposition id is 709ef9...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_r_graphHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 31b820... and proposition id is f97121...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_r_graphHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is df7a79... and proposition id is 06b274...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_r_graphHom_struct_rstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 5a5e55... and proposition id is 4a76cf...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_r_graphHom_struct_rstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is ace795... and proposition id is c2d12c...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_r_graphHom_struct_rstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is 42c34c... and proposition id is 90b913...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_r_graphHom_struct_rstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is cfd776... and proposition id is 3aa348...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_r_graphHom_struct_rstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 682a6e... and proposition id is 1e88dd...