L1
Definition. We define struct_r_graph to be λX ⇒ struct_r Xunpack_r_o X (λX' r ⇒ (∀xX', ¬ r x x)(∀x yX', r x yr y x)) of type setprop.
(*** $I sig/PfgEJul2021Preamble7.mgs ***)
L5
Theorem. (MetaCat_struct_r_graph)
MetaCat struct_r_graph Hom_struct_r struct_id struct_comp
Proof:
Proof not loaded.
L11
Theorem. (MetaCat_struct_r_graph_Forgetful)
MetaFunctor struct_r_graph Hom_struct_r struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
Proof not loaded.
L21
Proposition. (MetaCat_struct_r_graph_initial)
∃Y : set, ∃uniqa : setset, initial_p struct_r_graph Hom_struct_r struct_id struct_comp Y uniqa
Proof:
Proof not loaded.
L25
Proposition. (MetaCat_struct_r_graph_terminal)
∃Y : set, ∃uniqa : setset, terminal_p struct_r_graph Hom_struct_r struct_id struct_comp Y uniqa
Proof:
Proof not loaded.
L29
Proposition. (MetaCat_struct_r_graph_coproduct_constr)
∃coprod : setsetset, ∃i0 i1 : setsetset, ∃copair : setsetsetsetsetset, coproduct_constr_p struct_r_graph Hom_struct_r struct_id struct_comp coprod i0 i1 copair
Proof:
Proof not loaded.
L36
Proposition. (MetaCat_struct_r_graph_product_constr)
∃prod : setsetset, ∃pi0 pi1 : setsetset, ∃pair : setsetsetsetsetset, product_constr_p struct_r_graph Hom_struct_r struct_id struct_comp prod pi0 pi1 pair
Proof:
Proof not loaded.
L43
Proposition. (MetaCat_struct_r_graph_coequalizer_constr)
∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, coequalizer_constr_p struct_r_graph Hom_struct_r struct_id struct_comp quot canonmap fac
Proof:
Proof not loaded.
L50
Proposition. (MetaCat_struct_r_graph_equalizer_constr)
∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, equalizer_constr_p struct_r_graph Hom_struct_r struct_id struct_comp quot canonmap fac
Proof:
Proof not loaded.
L57
Proposition. (MetaCat_struct_r_graph_pushout_constr)
∃po : setsetsetsetsetset, ∃i0 : setsetsetsetsetset, ∃i1 : setsetsetsetsetset, ∃copair : setsetsetsetsetsetsetsetset, pushout_constr_p struct_r_graph Hom_struct_r struct_id struct_comp po i0 i1 copair
Proof:
Proof not loaded.
L65
Proposition. (MetaCat_struct_r_graph_pullback_constr)
∃pb : setsetsetsetsetset, ∃pi0 : setsetsetsetsetset, ∃pi1 : setsetsetsetsetset, ∃pair : setsetsetsetsetsetsetsetset, pullback_constr_p struct_r_graph Hom_struct_r struct_id struct_comp pb pi0 pi1 pair
Proof:
Proof not loaded.
L73
Proposition. (MetaCat_struct_r_graph_product_exponent)
∃prod : setsetset, ∃pi0 pi1 : setsetset, ∃pair : setsetsetsetsetset, ∃exp : setsetset, ∃a : setsetset, ∃lm : setsetsetsetset, product_exponent_constr_p struct_r_graph Hom_struct_r struct_id struct_comp prod pi0 pi1 pair exp a lm
Proof:
Proof not loaded.
L83
Proposition. (MetaCat_struct_r_graph_subobject_classifier)
∃one : set, ∃uniqa : setset, ∃Omega : set, ∃tru : set, ∃ch : setsetsetset, ∃constr : setsetsetsetsetsetset, subobject_classifier_p struct_r_graph Hom_struct_r struct_id struct_comp one uniqa Omega tru ch constr
Proof:
Proof not loaded.
L91
Proposition. (MetaCat_struct_r_graph_nno)
∃one : set, ∃uniqa : setset, ∃N : set, ∃zer suc : set, ∃rec : setsetsetset, nno_p struct_r_graph Hom_struct_r struct_id struct_comp one uniqa N zer suc rec
Proof:
Proof not loaded.
L100
Proposition. (MetaCat_struct_r_graph_left_adjoint_forgetful)
∃F0 : setset, ∃F1 : setsetsetset, ∃eta eps : setset, MetaAdjunction_strict (λ_ ⇒ True) SetHom (λX ⇒ (lam_id X)) (λX Y Z f g ⇒ (lam_comp X f g)) struct_r_graph Hom_struct_r struct_id struct_comp F0 F1 (λX ⇒ X 0) (λX Y f ⇒ f) eta eps
Proof:
Proof not loaded.