Definition. We define struct_r_equivreln to be λX ⇒ struct_rX ∧ unpack_r_oX(λX' r ⇒ (∀x ∈ X', rxx) ∧ (∀x y ∈ X', rxy → ryx) ∧ (∀x y z ∈ X', rxy → ryz → rxz)) of type set → prop.
In Proofgold the corresponding term root is add478... and object id is 8eed6e...
∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_r_equivrelnHom_struct_rstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is d99afa... and proposition id is ec184a...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_r_equivrelnHom_struct_rstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 78f231... and proposition id is 4d1dff...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_r_equivrelnHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 61fb92... and proposition id is 6349ae...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_r_equivrelnHom_struct_rstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 88bfe6... and proposition id is 99d065...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_r_equivrelnHom_struct_rstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 6f21b4... and proposition id is a7d8ad...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_r_equivrelnHom_struct_rstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is f66e64... and proposition id is e7f7df...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_r_equivrelnHom_struct_rstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is cd35a6... and proposition id is 82496f...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_r_equivrelnHom_struct_rstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is 6853aa... and proposition id is 186505...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_r_equivrelnHom_struct_rstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is d9aa9b... and proposition id is 80d3dc...