∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_p_nonemptyHom_struct_pstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is dc308e... and proposition id is 0e8077...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_p_nonemptyHom_struct_pstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 27a094... and proposition id is 456586...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_p_nonemptyHom_struct_pstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 05e388... and proposition id is 5f5ea3...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_p_nonemptyHom_struct_pstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 6e85da... and proposition id is e3112c...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_p_nonemptyHom_struct_pstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is f9e1f6... and proposition id is 77ee96...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_p_nonemptyHom_struct_pstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is 36c11b... and proposition id is ebc637...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_p_nonemptyHom_struct_pstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is 9bd4d5... and proposition id is e25fa0...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_p_nonemptyHom_struct_pstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is ed4e1f... and proposition id is 7aaf37...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_p_nonemptyHom_struct_pstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is ee112f... and proposition id is 57ed90...
MetaFunctorstruct_eHom_struct_e(λX ⇒ (lam_id(X0)))(λX Y Z f g ⇒ (lam_comp(X0)fg))struct_p_nonemptyHom_struct_p(λX ⇒ (lam_id(X0)))(λX Y Z f g ⇒ (lam_comp(X0)fg))(λX ⇒ unpack_e_iX(λX' e ⇒ pack_pX'(λx ⇒ x = e)))(λX Y f ⇒ f)
In Proofgold the corresponding term root is f195ff... and proposition id is 1f2a9b...