L1
Definition. We define struct_c_Hausdorff_topology to be λX ⇒ struct_c Xunpack_c_o X (λX' Open ⇒ Open (λx ⇒ x X')(∀U V : setprop, Open UOpen VOpen (λx ⇒ U xU x))(∀C : (setprop)prop, (∀U : setprop, C UOpen U)Open (λx ⇒ ∃U : setprop, C UU x))(∀a bX', ab∃U V : setprop, Open UOpen VU aV b(∀x, U x¬ V x))) of type setprop.
(*** $I sig/PfgEJul2021Preamble7.mgs ***)
L13
Theorem. (MetaCat_struct_c_Hausdorff_topology)
MetaCat struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp
Proof:
Proof not loaded.
L19
Theorem. (MetaCat_struct_c_Hausdorff_topology_Forgetful)
MetaFunctor struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
Proof not loaded.
L29
Proposition. (MetaCat_struct_c_Hausdorff_topology_initial)
∃Y : set, ∃uniqa : setset, initial_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp Y uniqa
Proof:
Proof not loaded.
L33
Proposition. (MetaCat_struct_c_Hausdorff_topology_terminal)
∃Y : set, ∃uniqa : setset, terminal_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp Y uniqa
Proof:
Proof not loaded.
L37
Proposition. (MetaCat_struct_c_Hausdorff_topology_coproduct_constr)
∃coprod : setsetset, ∃i0 i1 : setsetset, ∃copair : setsetsetsetsetset, coproduct_constr_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp coprod i0 i1 copair
Proof:
Proof not loaded.
L44
Proposition. (MetaCat_struct_c_Hausdorff_topology_product_constr)
∃prod : setsetset, ∃pi0 pi1 : setsetset, ∃pair : setsetsetsetsetset, product_constr_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp prod pi0 pi1 pair
Proof:
Proof not loaded.
L51
Proposition. (MetaCat_struct_c_Hausdorff_topology_coequalizer_constr)
∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, coequalizer_constr_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp quot canonmap fac
Proof:
Proof not loaded.
L58
Proposition. (MetaCat_struct_c_Hausdorff_topology_equalizer_constr)
∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, equalizer_constr_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp quot canonmap fac
Proof:
Proof not loaded.
L65
Proposition. (MetaCat_struct_c_Hausdorff_topology_pushout_constr)
∃po : setsetsetsetsetset, ∃i0 : setsetsetsetsetset, ∃i1 : setsetsetsetsetset, ∃copair : setsetsetsetsetsetsetsetset, pushout_constr_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp po i0 i1 copair
Proof:
Proof not loaded.
L73
Proposition. (MetaCat_struct_c_Hausdorff_topology_pullback_constr)
∃pb : setsetsetsetsetset, ∃pi0 : setsetsetsetsetset, ∃pi1 : setsetsetsetsetset, ∃pair : setsetsetsetsetsetsetsetset, pullback_constr_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp pb pi0 pi1 pair
Proof:
Proof not loaded.
L81
Proposition. (MetaCat_struct_c_Hausdorff_topology_product_exponent)
∃prod : setsetset, ∃pi0 pi1 : setsetset, ∃pair : setsetsetsetsetset, ∃exp : setsetset, ∃a : setsetset, ∃lm : setsetsetsetset, product_exponent_constr_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp prod pi0 pi1 pair exp a lm
Proof:
Proof not loaded.
L91
Proposition. (MetaCat_struct_c_Hausdorff_topology_subobject_classifier)
∃one : set, ∃uniqa : setset, ∃Omega : set, ∃tru : set, ∃ch : setsetsetset, ∃constr : setsetsetsetsetsetset, subobject_classifier_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp one uniqa Omega tru ch constr
Proof:
Proof not loaded.
L99
Proposition. (MetaCat_struct_c_Hausdorff_topology_nno)
∃one : set, ∃uniqa : setset, ∃N : set, ∃zer suc : set, ∃rec : setsetsetset, nno_p struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp one uniqa N zer suc rec
Proof:
Proof not loaded.
L108
Proposition. (MetaCat_struct_c_Hausdorff_topology_left_adjoint_forgetful)
∃F0 : setset, ∃F1 : setsetsetset, ∃eta eps : setset, MetaAdjunction_strict (λ_ ⇒ True) SetHom (λX ⇒ (lam_id X)) (λX Y Z f g ⇒ (lam_comp X f g)) struct_c_Hausdorff_topology Hom_struct_c struct_id struct_comp F0 F1 (λX ⇒ X 0) (λX Y f ⇒ f) eta eps
Proof:
Proof not loaded.