Definition. We define struct_c_Hausdorff_topology to be λX ⇒ struct_cX ∧ unpack_c_oX(λX' Open ⇒ Open(λx ⇒ x∈X') ∧ (∀U V : set → prop, OpenU → OpenV → Open(λx ⇒ Ux ∧ Ux)) ∧ (∀C : (set → prop) → prop, (∀U : set → prop, CU → OpenU) → Open(λx ⇒ ∃U : set → prop, CU ∧ Ux)) ∧ (∀a b ∈ X', a ≠ b → ∃U V : set → prop, OpenU ∧ OpenV ∧ Ua ∧ Vb ∧ (∀x, Ux → ¬ Vx))) of type set → prop.
In Proofgold the corresponding term root is af0970... and object id is e61511...
∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_c_Hausdorff_topologyHom_struct_cstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is 5b67a9... and proposition id is 393181...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_c_Hausdorff_topologyHom_struct_cstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is defa7f... and proposition id is 036877...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_c_Hausdorff_topologyHom_struct_cstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 09c43e... and proposition id is 62158c...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_c_Hausdorff_topologyHom_struct_cstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is fd2df2... and proposition id is fcf6b3...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_c_Hausdorff_topologyHom_struct_cstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is a0f8b9... and proposition id is d648e4...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_c_Hausdorff_topologyHom_struct_cstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is baca17... and proposition id is 59f337...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_c_Hausdorff_topologyHom_struct_cstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is 568d6e... and proposition id is c8e85c...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_c_Hausdorff_topologyHom_struct_cstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is 593fae... and proposition id is e10966...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_c_Hausdorff_topologyHom_struct_cstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 14e059... and proposition id is b66fd9...