Definition. We define struct_b_quasigroup to be λX ⇒ struct_bX ∧ unpack_b_oX(λX' op ⇒ (∀a ∈ X', bijX'X'(λx ⇒ opax)) ∧ (∀a ∈ X', bijX'X'(λx ⇒ opxa))) of type set → prop.
In Proofgold the corresponding term root is d858cc... and object id is fe6453...
∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_b_quasigroupHom_struct_bstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is 4f5706... and proposition id is a51804...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_b_quasigroupHom_struct_bstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is f456a6... and proposition id is dd5dca...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_b_quasigroupHom_struct_bstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 2fc5db... and proposition id is 5637bb...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_b_quasigroupHom_struct_bstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 422d84... and proposition id is b86357...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_b_quasigroupHom_struct_bstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 25673b... and proposition id is e9148b...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_b_quasigroupHom_struct_bstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is 733a7a... and proposition id is d652b9...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_b_quasigroupHom_struct_bstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is 6439ba... and proposition id is 58d583...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_b_quasigroupHom_struct_bstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is 1e48d1... and proposition id is a4869e...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_b_quasigroupHom_struct_bstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 805666... and proposition id is 63ebf3...