Definition. We define struct_b_monoid to be λX ⇒ struct_bX ∧ unpack_b_oX(λX' op ⇒ (∀x y z ∈ X', op(opxy)z = opx(opyz)) ∧ (∃e ∈ X', ∀x ∈ X', opxe = x ∧ opex = x)) of type set → prop.
In Proofgold the corresponding term root is 8d1ba8... and object id is 63485b...
∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_b_monoidHom_struct_bstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is 3ac946... and proposition id is 9d52d9...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_b_monoidHom_struct_bstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is ba0d7e... and proposition id is 64746d...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_b_monoidHom_struct_bstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 224058... and proposition id is 092479...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_b_monoidHom_struct_bstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 7e8304... and proposition id is 1451d1...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_b_monoidHom_struct_bstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 75fa41... and proposition id is a8dbb6...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_b_monoidHom_struct_bstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is e9abb0... and proposition id is f9bf8f...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_b_monoidHom_struct_bstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is 197806... and proposition id is 65df6c...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_b_monoidHom_struct_bstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is f09c3d... and proposition id is d0e051...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_b_monoidHom_struct_bstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 5204ac... and proposition id is 7f3dca...