L1
Definition. We define struct_b_loop to be λX ⇒ struct_b Xunpack_b_o X (λX' op ⇒ (∃e ∈ X', ∀xX', op x e = xop e x = x)(∀aX', bij X' X' (λx ⇒ op a x))(∀aX', bij X' X' (λx ⇒ op x a))) of type setprop.
(*** $I sig/PfgEJul2021Preamble7.mgs ***)
L9
Theorem. (MetaCat_struct_b_loop)
MetaCat struct_b_loop Hom_struct_b struct_id struct_comp
Proof:
Proof not loaded.
L15
Theorem. (MetaCat_struct_b_loop_Forgetful)
MetaFunctor struct_b_loop Hom_struct_b struct_id struct_comp (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ (lam_comp X f g)) (λX ⇒ X 0) (λX Y f ⇒ f)
Proof:
Proof not loaded.
L25
Proposition. (MetaCat_struct_b_loop_initial)
∃Y : set, ∃uniqa : setset, initial_p struct_b_loop Hom_struct_b struct_id struct_comp Y uniqa
Proof:
Proof not loaded.
L29
Proposition. (MetaCat_struct_b_loop_terminal)
∃Y : set, ∃uniqa : setset, terminal_p struct_b_loop Hom_struct_b struct_id struct_comp Y uniqa
Proof:
Proof not loaded.
L33
Proposition. (MetaCat_struct_b_loop_coproduct_constr)
∃coprod : setsetset, ∃i0 i1 : setsetset, ∃copair : setsetsetsetsetset, coproduct_constr_p struct_b_loop Hom_struct_b struct_id struct_comp coprod i0 i1 copair
Proof:
Proof not loaded.
L40
Proposition. (MetaCat_struct_b_loop_product_constr)
∃prod : setsetset, ∃pi0 pi1 : setsetset, ∃pair : setsetsetsetsetset, product_constr_p struct_b_loop Hom_struct_b struct_id struct_comp prod pi0 pi1 pair
Proof:
Proof not loaded.
L47
Proposition. (MetaCat_struct_b_loop_coequalizer_constr)
∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, coequalizer_constr_p struct_b_loop Hom_struct_b struct_id struct_comp quot canonmap fac
Proof:
Proof not loaded.
L54
Proposition. (MetaCat_struct_b_loop_equalizer_constr)
∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, equalizer_constr_p struct_b_loop Hom_struct_b struct_id struct_comp quot canonmap fac
Proof:
Proof not loaded.
L61
Proposition. (MetaCat_struct_b_loop_pushout_constr)
∃po : setsetsetsetsetset, ∃i0 : setsetsetsetsetset, ∃i1 : setsetsetsetsetset, ∃copair : setsetsetsetsetsetsetsetset, pushout_constr_p struct_b_loop Hom_struct_b struct_id struct_comp po i0 i1 copair
Proof:
Proof not loaded.
L69
Proposition. (MetaCat_struct_b_loop_pullback_constr)
∃pb : setsetsetsetsetset, ∃pi0 : setsetsetsetsetset, ∃pi1 : setsetsetsetsetset, ∃pair : setsetsetsetsetsetsetsetset, pullback_constr_p struct_b_loop Hom_struct_b struct_id struct_comp pb pi0 pi1 pair
Proof:
Proof not loaded.
L77
Proposition. (MetaCat_struct_b_loop_product_exponent)
∃prod : setsetset, ∃pi0 pi1 : setsetset, ∃pair : setsetsetsetsetset, ∃exp : setsetset, ∃a : setsetset, ∃lm : setsetsetsetset, product_exponent_constr_p struct_b_loop Hom_struct_b struct_id struct_comp prod pi0 pi1 pair exp a lm
Proof:
Proof not loaded.
L87
Proposition. (MetaCat_struct_b_loop_subobject_classifier)
∃one : set, ∃uniqa : setset, ∃Omega : set, ∃tru : set, ∃ch : setsetsetset, ∃constr : setsetsetsetsetsetset, subobject_classifier_p struct_b_loop Hom_struct_b struct_id struct_comp one uniqa Omega tru ch constr
Proof:
Proof not loaded.
L95
Proposition. (MetaCat_struct_b_loop_nno)
∃one : set, ∃uniqa : setset, ∃N : set, ∃zer suc : set, ∃rec : setsetsetset, nno_p struct_b_loop Hom_struct_b struct_id struct_comp one uniqa N zer suc rec
Proof:
Proof not loaded.
L104
Proposition. (MetaCat_struct_b_loop_left_adjoint_forgetful)
∃F0 : setset, ∃F1 : setsetsetset, ∃eta eps : setset, MetaAdjunction_strict (λ_ ⇒ True) SetHom (λX ⇒ (lam_id X)) (λX Y Z f g ⇒ (lam_comp X f g)) struct_b_loop Hom_struct_b struct_id struct_comp F0 F1 (λX ⇒ X 0) (λX Y f ⇒ f) eta eps
Proof:
Proof not loaded.