∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_b_loopHom_struct_bstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is a6f455... and proposition id is 702de0...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_b_loopHom_struct_bstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 8a471b... and proposition id is 6133c4...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_b_loopHom_struct_bstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 5ccdcc... and proposition id is 8f14a6...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_b_loopHom_struct_bstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 506ac0... and proposition id is f1b36d...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_b_loopHom_struct_bstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is e40161... and proposition id is 8bacb1...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_b_loopHom_struct_bstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is 995f89... and proposition id is 2614cb...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_b_loopHom_struct_bstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is 48cc55... and proposition id is 6aef94...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_b_loopHom_struct_bstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is ae76b1... and proposition id is 6f86d4...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_b_loopHom_struct_bstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is f75c12... and proposition id is 39e48e...