Definition. We define struct_b_b_e_e_semiring to be λR ⇒ struct_b_b_e_eR ∧ unpack_b_b_e_e_oR(λR plus mult zero one ⇒ (∀x y z ∈ R, plus(plusxy)z = plusx(plusyz)) ∧ (∀x y ∈ R, plusxy = plusyx) ∧ (∀x ∈ R, plusxzero = x) ∧ (∀x y z ∈ R, mult(multxy)z = multx(multyz)) ∧ (∀x ∈ R, multxone = x ∧ multonex = x) ∧ (∀x y z ∈ R, multx(plusyz) = plus(multxy)(multxz)) ∧ (∀x y z ∈ R, mult(plusxy)z = plus(multxz)(multyz)) ∧ (∀x ∈ R, multxzero = zero) ∧ (∀x ∈ R, multzerox = zero)) of type set → prop.
In Proofgold the corresponding term root is bde844... and object id is 5b4ddd...
MetaFunctorstruct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_comp(λ_ ⇒ True)SetHom(λX ⇒ lam_idX)(λX Y Z f g ⇒ (lam_compXfg))(λX ⇒ X0)(λX Y f ⇒ f)
In Proofgold the corresponding term root is 2b3fcd... and proposition id is f402bf...
∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is b06d26... and proposition id is 8d77da...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 242a90... and proposition id is 56fbd7...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is da036b... and proposition id is 21d064...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is 31c95e... and proposition id is dca6f7...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 3167f8... and proposition id is 9b9a38...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is 513a36... and proposition id is e6262e...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is b2ca42... and proposition id is 6b4675...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is fc2754... and proposition id is 419d29...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_b_b_e_e_semiringHom_struct_b_b_e_estruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 8e575a... and proposition id is 29f18b...