Definition. We define struct_b_b_e_crng to be λR ⇒ struct_b_b_eR ∧ unpack_b_b_e_oR(λR plus mult zero ⇒ explicit_RngRzeroplusmult ∧ (∀x y ∈ R, multxy = multyx)) of type set → prop.
In Proofgold the corresponding term root is a27cd8... and object id is 72966a...
∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_b_b_e_crngHom_struct_b_b_estruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is 98f1e6... and proposition id is 5d66b3...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_b_b_e_crngHom_struct_b_b_estruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 8843e1... and proposition id is 256257...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_b_b_e_crngHom_struct_b_b_estruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is aa6332... and proposition id is 64e778...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_b_b_e_crngHom_struct_b_b_estruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is df3c36... and proposition id is 6b4e01...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_b_b_e_crngHom_struct_b_b_estruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 721f79... and proposition id is 406b91...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_b_b_e_crngHom_struct_b_b_estruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is c78a61... and proposition id is de7c82...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_b_b_e_crngHom_struct_b_b_estruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is d5ef5c... and proposition id is da9ac3...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_b_b_e_crngHom_struct_b_b_estruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is ea2298... and proposition id is 60634a...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_b_b_e_crngHom_struct_b_b_estruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 3918b6... and proposition id is ea9f0f...