Definition. We define struct_b_abelian_group to be λX ⇒ struct_bX ∧ unpack_b_oX(λX' op ⇒ explicit_GroupX'op ∧ explicit_abelianX'op) of type set → prop.
In Proofgold the corresponding term root is 68631c... and object id is a355bd...
∃coprod : set → set → set, ∃i0 i1 : set → set → set, ∃copair : set → set → set → set → set → set, coproduct_constr_pstruct_b_abelian_groupHom_struct_bstruct_idstruct_compcoprodi0i1copair
In Proofgold the corresponding term root is 3245f0... and proposition id is d1f2d8...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, product_constr_pstruct_b_abelian_groupHom_struct_bstruct_idstruct_compprodpi0pi1pair
In Proofgold the corresponding term root is 1790b1... and proposition id is 760b6a...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, coequalizer_constr_pstruct_b_abelian_groupHom_struct_bstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is aeae63... and proposition id is c94cfe...
∃quot : set → set → set → set → set, ∃canonmap : set → set → set → set → set, ∃fac : set → set → set → set → set → set → set, equalizer_constr_pstruct_b_abelian_groupHom_struct_bstruct_idstruct_compquotcanonmapfac
In Proofgold the corresponding term root is b5511c... and proposition id is 994bf4...
∃po : set → set → set → set → set → set, ∃i0 : set → set → set → set → set → set, ∃i1 : set → set → set → set → set → set, ∃copair : set → set → set → set → set → set → set → set → set, pushout_constr_pstruct_b_abelian_groupHom_struct_bstruct_idstruct_comppoi0i1copair
In Proofgold the corresponding term root is 1fb0dd... and proposition id is 066718...
∃pb : set → set → set → set → set → set, ∃pi0 : set → set → set → set → set → set, ∃pi1 : set → set → set → set → set → set, ∃pair : set → set → set → set → set → set → set → set → set, pullback_constr_pstruct_b_abelian_groupHom_struct_bstruct_idstruct_comppbpi0pi1pair
In Proofgold the corresponding term root is 43013d... and proposition id is e443a4...
∃prod : set → set → set, ∃pi0 pi1 : set → set → set, ∃pair : set → set → set → set → set → set, ∃exp : set → set → set, ∃a : set → set → set, ∃lm : set → set → set → set → set, product_exponent_constr_pstruct_b_abelian_groupHom_struct_bstruct_idstruct_compprodpi0pi1pairexpalm
In Proofgold the corresponding term root is e2e65e... and proposition id is f8b926...
∃one : set, ∃uniqa : set → set, ∃Omega : set, ∃tru : set, ∃ch : set → set → set → set, ∃constr : set → set → set → set → set → set → set, subobject_classifier_pstruct_b_abelian_groupHom_struct_bstruct_idstruct_componeuniqaOmegatruchconstr
In Proofgold the corresponding term root is 237288... and proposition id is 78047c...
∃F0 : set → set, ∃F1 : set → set → set → set, ∃eta eps : set → set, MetaAdjunction_strict(λ_ ⇒ True)SetHom(λX ⇒ (lam_idX))(λX Y Z f g ⇒ (lam_compXfg))struct_b_abelian_groupHom_struct_bstruct_idstruct_compF0F1(λX ⇒ X0)(λX Y f ⇒ f)etaeps
In Proofgold the corresponding term root is 6ebdd6... and proposition id is 3295db...