Proposition. (MetaCatSet_coequalizer_gen)
∀Obj : setprop, (∀X, Obj X∀QX, Obj Q)∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, coequalizer_constr_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) quot canonmap fac
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_coequalizer)
∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, coequalizer_constr_p (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) quot canonmap fac
Proof:
The rest of the proof is missing.

Proposition. (MetaCatHFSet_coequalizer)
∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, coequalizer_constr_p (λX ⇒ X UnivOf Empty) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) quot canonmap fac
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSmallSet_coequalizer)
∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, coequalizer_constr_p (λX ⇒ X UnivOf (UnivOf Empty)) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) quot canonmap fac
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_equalizer_gen)
∀Obj : setprop, (∀X, Obj X∀QX, Obj Q)∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, equalizer_constr_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) quot canonmap fac
Proof:
The rest of the proof is missing.

Proposition. (MetaCatHFSet_equalizer_gen)
∀Obj : setprop, (∀X, Obj X∀QX, Obj Q)∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, equalizer_constr_p (λX ⇒ X UnivOf Empty) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) quot canonmap fac
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSmallSet_equalizer_gen)
∀Obj : setprop, (∀X, Obj X∀QX, Obj Q)∃quot : setsetsetsetset, ∃canonmap : setsetsetsetset, ∃fac : setsetsetsetsetsetset, equalizer_constr_p (λX ⇒ X UnivOf (UnivOf Empty)) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) quot canonmap fac
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_pullback_gen)
∀Obj : setprop, MetaCat Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g)(∀X, Obj X∀QX, Obj Q)(∀X, Obj X∀Y, Obj YObj (setprod X Y))∃pb : setsetsetsetsetset, ∃pi0 : setsetsetsetsetset, ∃pi1 : setsetsetsetsetset, ∃pair : setsetsetsetsetsetsetsetset, pullback_constr_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) pb pi0 pi1 pair
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_pullback)
∃pb : setsetsetsetsetset, ∃pi0 : setsetsetsetsetset, ∃pi1 : setsetsetsetsetset, ∃pair : setsetsetsetsetsetsetsetset, pullback_constr_p (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) pb pi0 pi1 pair
Proof:
The rest of the proof is missing.

Proposition. (MetaCatHFSet_pullback)
∃pb : setsetsetsetsetset, ∃pi0 : setsetsetsetsetset, ∃pi1 : setsetsetsetsetset, ∃pair : setsetsetsetsetsetsetsetset, pullback_constr_p (λX ⇒ X UnivOf Empty) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) pb pi0 pi1 pair
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSmallSet_pullback)
∃pb : setsetsetsetsetset, ∃pi0 : setsetsetsetsetset, ∃pi1 : setsetsetsetsetset, ∃pair : setsetsetsetsetsetsetsetset, pullback_constr_p (λX ⇒ X UnivOf (UnivOf Empty)) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) pb pi0 pi1 pair
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_pushout_gen)
∀Obj : setprop, MetaCat Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g)(∀X, Obj X∀QX, Obj Q)(∀X, Obj X∀Y, Obj YObj (setsum X Y))∃po : setsetsetsetsetset, ∃i0 : setsetsetsetsetset, ∃i1 : setsetsetsetsetset, ∃copair : setsetsetsetsetsetsetsetset, pushout_constr_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) po i0 i1 copair
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_pushout)
∃po : setsetsetsetsetset, ∃i0 : setsetsetsetsetset, ∃i1 : setsetsetsetsetset, ∃copair : setsetsetsetsetsetsetsetset, pushout_constr_p (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) po i0 i1 copair
Proof:
The rest of the proof is missing.

Proposition. (MetaCatHFSet_pushout)
∃po : setsetsetsetsetset, ∃i0 : setsetsetsetsetset, ∃i1 : setsetsetsetsetset, ∃copair : setsetsetsetsetsetsetsetset, pushout_constr_p (λX ⇒ X UnivOf Empty) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) po i0 i1 copair
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSmallSet_pushout)
∃po : setsetsetsetsetset, ∃i0 : setsetsetsetsetset, ∃i1 : setsetsetsetsetset, ∃copair : setsetsetsetsetsetsetsetset, pushout_constr_p (λX ⇒ X UnivOf (UnivOf Empty)) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) po i0 i1 copair
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_product_exponent_gen_setprod_setexp)
∀Obj : setprop, (∀X, Obj X∀Y, Obj YObj (setprod X Y))(∀X, Obj X∀Y, Obj YObj (YX))product_exponent_constr_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) setprod (λX Y ⇒ (λz ∈ XYz 0)) (λX Y ⇒ (λz ∈ XYz 1)) (λX Y W h k ⇒ (λw ∈ W(h w,k w))) (λX Y ⇒ YX) (λX Y ⇒ (λfx ∈ (YX)Xfx 0 (fx 1))) (λX Y W f ⇒ (λw ∈ Wλx ∈ Xf (w,x)))
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_product_exponent_gen)
∀Obj : setprop, (∀X, Obj X∀Y, Obj YObj (setprod X Y))(∀X, Obj X∀Y, Obj YObj (YX))∃prod : setsetset, ∃pi0 pi1 : setsetset, ∃pair : setsetsetsetsetset, ∃exp : setsetset, ∃a : setsetset, ∃lm : setsetsetsetset, product_exponent_constr_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) prod pi0 pi1 pair exp a lm
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_product_exponent)
∃prod : setsetset, ∃pi0 pi1 : setsetset, ∃pair : setsetsetsetsetset, ∃exp : setsetset, ∃a : setsetset, ∃lm : setsetsetsetset, product_exponent_constr_p (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) prod pi0 pi1 pair exp a lm
Proof:
The rest of the proof is missing.

Proposition. (MetaCatHFSet_product_exponent)
∃prod : setsetset, ∃pi0 pi1 : setsetset, ∃pair : setsetsetsetsetset, ∃exp : setsetset, ∃a : setsetset, ∃lm : setsetsetsetset, product_exponent_constr_p (λX ⇒ X UnivOf Empty) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) prod pi0 pi1 pair exp a lm
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_monic_inj_gen)
∀Obj : setprop, ∀X Y, ∀f : set, monic Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) X Y f∀u vX, f u = f vu = v
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_subobject_classifier_gen)
∀Obj : setprop, Obj 1Obj 2subobject_classifier_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) 1 (λX : set(λx ∈ X0)) 2 (λ_ ∈ 11) (λX Y : setλm : set(λy ∈ Yif (∃x ∈ X, m x = y) then 1 else 0)) (λX Y : setλm : setλW : setλh k : set(λw ∈ Winv X (λx ⇒ m x) (k w)))
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_subobject_classifier_gen_ex)
∀Obj : setprop, Obj 1Obj 2∃one : set, ∃uniqa : setset, ∃Omega : set, ∃tru : set, ∃ch : setsetsetset, ∃constr : setsetsetsetsetsetset, subobject_classifier_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) one uniqa Omega tru ch constr
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_subobject_classifier)
∃one : set, ∃uniqa : setset, ∃Omega : set, ∃tru : set, ∃ch : setsetsetset, ∃constr : setsetsetsetsetsetset, subobject_classifier_p (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) one uniqa Omega tru ch constr
Proof:
The rest of the proof is missing.

Proposition. (MetaCatHFSet_subobject_classifier)
∃one : set, ∃uniqa : setset, ∃Omega : set, ∃tru : set, ∃ch : setsetsetset, ∃constr : setsetsetsetsetsetset, subobject_classifier_p (λX ⇒ X UnivOf Empty) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) one uniqa Omega tru ch constr
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSmallSet_subobject_classifier)
∃one : set, ∃uniqa : setset, ∃Omega : set, ∃tru : set, ∃ch : setsetsetset, ∃constr : setsetsetsetsetsetset, subobject_classifier_p (λX ⇒ X UnivOf (UnivOf Empty)) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) one uniqa Omega tru ch constr
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_nno_gen)
∀Obj : setprop, Obj 1Obj omeganno_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) 1 (λX : set(λx ∈ X0)) omega (λ_ ∈ 10) (λn ∈ omegaordsucc n) (λX : setλx f : set(λn ∈ omeganat_primrec (x 0) (λ_ v ⇒ f v) n))
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_nno_gen_ex)
∀Obj : setprop, Obj 1Obj omega∃one : set, ∃uniqa : setset, ∃N : set, ∃zer suc : set, ∃rec : setsetsetset, nno_p Obj SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) one uniqa N zer suc rec
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSet_nno)
∃one : set, ∃uniqa : setset, ∃N : set, ∃zer suc : set, ∃rec : setsetsetset, nno_p (λ_ ⇒ True) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) one uniqa N zer suc rec
Proof:
The rest of the proof is missing.

Proposition. (MetaCatSmallSet_nno)
∃one : set, ∃uniqa : setset, ∃N : set, ∃zer suc : set, ∃rec : setsetsetset, nno_p (λX ⇒ X UnivOf (UnivOf Empty)) SetHom (λX ⇒ lam_id X) (λX Y Z f g ⇒ lam_comp X f g) one uniqa N zer suc rec
Proof:
The rest of the proof is missing.