Beginning of Section AIM
Variable X : set
Variable m b s : setsetset
Variable e : set
Variable K : setsetset
Variable a : setsetsetset
Variable T : setsetset
Variable L R : setsetsetset
Hypothesis He : e X
Hypothesis Hm : ∀x yX, m x y X
Hypothesis Hs : ∀x yX, s x y X
Hypothesis Hb : ∀x yX, b x y X
Hypothesis HKdef : ∀x yX, K x y = b (m y x) (m x y)
Hypothesis HK : ∀x yX, K x y X
Hypothesis Hadef : ∀x y zX, a x y z = b (m x (m y z)) (m (m x y) z)
Hypothesis Ha : ∀x y zX, a x y z X
Hypothesis HTdef : ∀u xX, T u x = b x (m u x)
Hypothesis HT : ∀u xX, T u x X
Hypothesis HLdef : ∀u x yX, L u x y = b (m y x) (m y (m x u))
Hypothesis HL : ∀u x yX, L u x y X
Hypothesis HRdef : ∀u x yX, R u x y = s (m (m u x) y) (m x y)
Hypothesis HR : ∀u x yX, R u x y X
Hypothesis HeL : ∀xX, m e x = x
Hypothesis HeR : ∀xX, m x e = x
Hypothesis Hbm : ∀x yX, b x (m x y) = y
Hypothesis Hmb : ∀x yX, m x (b x y) = y
Hypothesis Hsm : ∀x yX, s (m x y) y = x
Hypothesis Hms : ∀x yX, m (s x y) y = x
Hypothesis HTT : ∀u x yX, T (T u x) y = T (T u y) x
Hypothesis HTL : ∀u x y zX, T (L u x y) z = L (T u z) x y
Hypothesis HTR : ∀u x y zX, T (R u x y) z = R (T u z) x y
Hypothesis HLR : ∀u x y z wX, L (R u x y) z w = R (L u z w) x y
Hypothesis HLL : ∀u x y z wX, L (L u x y) z w = L (L u z w) x y
Hypothesis HRR : ∀u x y z wX, R (R u x y) z w = R (R u z w) x y
Theorem. (aK1)
∀x y z uX, a (K x y) z u = e
Proof:
The rest of the proof is missing.

Theorem. (aa1)
∀x y z u wX, a (a x y z) u w = e
Proof:
The rest of the proof is missing.

Theorem. (com__aa1)
(∀x yX, m x y = m y x)∀x y z u wX, a (a x y z) u w = e
Proof:
The rest of the proof is missing.

Theorem. (middle_Bol__aa1)
(∀x y zX, m x (b (m y z) x) = m (s x z) (b y x))∀x y z u wX, a (a x y z) u w = e
Proof:
The rest of the proof is missing.

Theorem. (KK_Kcom__aa1)
(∀x y zX, K (K x y) z = e)(∀x yX, K x y = K y x)∀x y z u wX, a (a x y z) u w = e
Proof:
The rest of the proof is missing.

Theorem. (T1dist__aa1)
(∀x y zX, m (T x y) (T z y) = T (m x z) y)∀x y z u wX, a (a x y z) u w = e
Proof:
The rest of the proof is missing.

Theorem. (nil3_24)
∀x y z u w v5 v6X, a (a (a x y z) u w) v5 v6 = e
Proof:
The rest of the proof is missing.

Theorem. (com__nil3_24)
(∀x yX, m x y = m y x)∀x y z u w v5 v6X, a (a (a x y z) u w) v5 v6 = e
Proof:
The rest of the proof is missing.

Theorem. (aa1_45)
∀x y z u wX, a (a x y z) u w = a (a x y z) w u
Proof:
The rest of the proof is missing.

Theorem. (nil3_24__aa1)
(∀x y z u w v5 v6X, a (a (a x y z) u w) v5 v6 = e)∀x y z u wX, a (a x y z) u w = e
Proof:
The rest of the proof is missing.

End of Section AIM