Beginning of Section AIM
Variable X : set
Variable m b s : set → set → set
Variable e : set
Variable K : set → set → set
Variable a : set → set → set → set
Variable T : set → set → set
Variable L R : set → set → set → set
Hypothesis Hm : ∀x y ∈ X, m x y ∈ X
Hypothesis Hs : ∀x y ∈ X, s x y ∈ X
Hypothesis Hb : ∀x y ∈ X, b x y ∈ X
Hypothesis HKdef : ∀x y ∈ X, K x y = b (m y x) (m x y)
Hypothesis HK : ∀x y ∈ X, K x y ∈ X
Hypothesis Hadef : ∀x y z ∈ X, a x y z = b (m x (m y z)) (m (m x y) z)
Hypothesis Ha : ∀x y z ∈ X, a x y z ∈ X
Hypothesis HTdef : ∀u x ∈ X, T u x = b x (m u x)
Hypothesis HT : ∀u x ∈ X, T u x ∈ X
Hypothesis HLdef : ∀u x y ∈ X, L u x y = b (m y x) (m y (m x u))
Hypothesis HL : ∀u x y ∈ X, L u x y ∈ X
Hypothesis HRdef : ∀u x y ∈ X, R u x y = s (m (m u x) y) (m x y)
Hypothesis HR : ∀u x y ∈ X, R u x y ∈ X
Hypothesis HeL : ∀x ∈ X, m e x = x
Hypothesis HeR : ∀x ∈ X, m x e = x
Hypothesis Hbm : ∀x y ∈ X, b x (m x y) = y
Hypothesis Hmb : ∀x y ∈ X, m x (b x y) = y
Hypothesis Hsm : ∀x y ∈ X, s (m x y) y = x
Hypothesis Hms : ∀x y ∈ X, m (s x y) y = x
Hypothesis HTT : ∀u x y ∈ X, T (T u x) y = T (T u y) x
Hypothesis HTL : ∀u x y z ∈ X, T (L u x y) z = L (T u z) x y
Hypothesis HTR : ∀u x y z ∈ X, T (R u x y) z = R (T u z) x y
Hypothesis HLR : ∀u x y z w ∈ X, L (R u x y) z w = R (L u z w) x y
Hypothesis HLL : ∀u x y z w ∈ X, L (L u x y) z w = L (L u z w) x y
Hypothesis HRR : ∀u x y z w ∈ X, R (R u x y) z w = R (R u z w) x y
Theorem. (
aK1)
∀x y z u ∈ X, a (K x y) z u = e
Proof:The rest of the proof is missing.