Beginning of Section Random3
Variable r : setsetprop
Variable g : setsetset
Variable q : setprop
Variable p : setprop
Variable f : setset
Variable z y x : set
Theorem. (conj_Random3_TMEtp1VLyohnxRuiPH7w63QqjFycGR1pE99)
∃X8 : set, (((g y x = g (f X8) (g (f (f y)) y))p (g (g (g y y) (f X8)) (g z (f (f y)))))(∃X9 : set, (¬ p z)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMa6U1phXgeiBqPe9iK1tj8z5ktabkEBdBS)
((∃X8 : set, ((((∃X9 : set, ∃X10 : set, ((y = X8)(X8 = g X10 X10)))(∃X9 : set, ((y = y)(z = z))))(∀X9 : set, (X8 = X9)))(y = g X8 X8)))(∃X8 : set, p (g x (g (g X8 (g (f (f (f z))) (g x (g x y)))) x))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMJWwFyh5h8KoFa5YgsGd1KydNMbusMTCE2)
((∀X8 : set, (¬ p (g y z))(∃X9 : set, (r (g (g x (f z)) (g x X8)) (f (g y X8))p x)))(∃X8 : set, ∃X9 : set, (q (f (g y z))(x = X8))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMJ8ZUQ7pMunaUnp4TUhQpZXjMnErNUnrD2)
∃X8 : set, (((∀X9 : set, (∃X10 : set, ((∀X11 : set, ((X11 = X9)(∃X12 : set, p X11)))((¬ p X10)(g (f X8) x = g X10 y))))(x = y))(∀X9 : set, (¬ p (g z (f x)))))(f z = g (f X8) x))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMYL2s7h3gQZ7uPF7PzmQMJXT6Kt2jocTu6)
((∃X8 : set, ((z = f X8)(∃X9 : set, ((∃X10 : set, ((X9 = X9)(∀X11 : set, (X9 = X10))))((y = f y)(∃X10 : set, (x = X9)))))))((∃X8 : set, p (f z))(¬ r (g (f (f (f x))) x) (f z))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMcnbGNrki6kckhfZddLRRizKCdkD4nACLR)
(¬ p (f (g (g y (g (f (g y (f (g y (g (g (f x) x) (g z (g (g (g (f (g x (g (f z) x))) x) (f (g (g x (g y (f (g (f (g z y)) (g (g y (f y)) (g y (f (g x (g (f (g (g x (f (g (g (g (g x (g z z)) y) (g (g (g (g z (g y z)) (g y x)) (g (g z x) x)) (f y))) z))) (g (g (f (g z (g z x))) (f (g (f (g y (g (g (g x (g (g x x) x)) x) z))) (f z)))) (g z (f (g (g (g z (f x)) (g (f x) (g x (g x (g z y))))) (f (g x (g (f y) x))))))))) (g z (g y z))))))))))) (f x)))) x))))))) z)) z)))r y x
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMPE8oug9tcfYtLwYtbQdk7NeUVqa48do5t)
∃X8 : set, p (g (g x (g x y)) (f (f (g (g (f (g (f (g (g x z) (g (f x) z))) (g y (g z (f y))))) (g y (g z X8))) (f (f x))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMZZmtQ7wu6S8sYc2unMArQRQ272oLocB8Y)
∀X8 : set, (¬ q X8)(∀X9 : set, (∃X10 : set, ((∀X11 : set, (∀X12 : set, (¬ r X8 (f y))(∀X13 : set, p x(∃X14 : set, (f X13 = X14))))(∀X12 : set, (X11 = f y)))(¬ p y)))(∀X10 : set, q z(∀X11 : set, (∃X12 : set, (y = X8))(∀X12 : set, p X10))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMSDaUtNXxuUd7PRxpdFwQFPPgvvi1s6Y3U)
∃X8 : set, (((X8 = x)(∀X9 : set, ∀X10 : set, (∀X11 : set, (¬ r X10 X8)(∃X12 : set, ∃X13 : set, p X8))(∀X11 : set, ∀X12 : set, (X10 = X11))))((∃X9 : set, (f z = f (f z)))(¬ r y X8)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMNXJS9dMpZjpkEiiFjn1j3Mbo5GP1L8p4Y)
(g (g (g y (f x)) x) x = g (g y (g y (g (f (g x (f (g y y)))) x))) (g (g (g (g x z) (g y (f x))) (g (g z (f y)) z)) (g (f z) (f x))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMEpAzBopztXyV1qjgxBVVuSRHroAKgyYgo)
(¬ r z (g (g z (g (g (f (g x x)) x) (g (g (g (f x) x) x) (g z (g (g x (g x (g (g z x) (g x (g (g (g (g z (g y x)) (g y y)) y) (g z (g (f x) y))))))) y))))) x))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMN6jz5U6xAwrnfFDxpeYhRTwv9NN4ZkSfM)
∃X8 : set, ((g (g (g (g x (g y (f (f (g (f z) (g (g (f (g z X8)) x) X8)))))) (g X8 x)) z) z = f (g (g (g y y) (f y)) (f (f (g (g y (g y y)) x)))))(∃X9 : set, p z))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMbjYSHeJ5Y6qCdLrPaUX7hLz2u8zJWZhyz)
(¬ p z)(∀X8 : set, (g y (g (f (g (f (g (g (g (g (g y z) (f y)) (f (g (g x (g X8 z)) y))) (g (g x (g y x)) X8)) y)) (f (g x (g (f (g (g (f z) (g (g x z) (f (g (f x) (g (f (g (f y) X8)) y))))) (f (f z)))) (g (g x x) (f X8))))))) x) = g (g (f x) (f x)) y))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMdBrwQbYrtDWfJByTQUhbfd7AXLurf7pEj)
(x = g (g (g (f (g (g (g (g x (g (g z (g (f (g (g (g x y) x) x)) y)) y)) x) (g z (g (g (g (g y y) z) (g (f x) (g (g (g (g x x) z) x) (g z y)))) (g (g z (g (g x z) (f (g y (g (g z (g (g (g x (g (g z y) (f y))) (g x x)) z)) x))))) z)))) x)) (g y (f (g z (g z (g (g (g (g (g (g (g y (f x)) (f (g (g (f (g z z)) z) (g (g x (g x (f (g x (f (g x x)))))) (g y y))))) x) (f y)) x) y) x)))))) y) (g (g (g (g y z) (g (g z (g (g (g (g z y) (g x x)) (f (g y (g z x)))) y)) y)) (f (g (g z z) y))) x))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMGhyoUTArnaR6tphsTN1TYRyaZuozAVkGT)
∃X8 : set, ((f (f (g (g y (g X8 (g z y))) (f (g z (g z (f (g (g (g (g x (g x (f z))) (g x (f (g y y)))) z) x))))))) = f X8)((∀X9 : set, (¬ q z))p X8))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMTeVHF2tVDGmurSGa7uQc2UQ5ESU1Jf4X3)
(((∃X8 : set, ((∀X9 : set, p y)(∃X9 : set, p y)))(∀X8 : set, ∀X9 : set, (¬ r z X9)))(∃X8 : set, ((∀X9 : set, ∀X10 : set, ((∀X11 : set, (z = g X9 X8))(z = x))(f y = x))(f z = g X8 y))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMHd7jJSY7yc4ARGe2HU1GjTTYyhHQTv6MG)
(((¬ q (g (f y) (g (g (g x z) x) x)))r (f y) y)(∀X8 : set, ∃X9 : set, ((g x (f (f X8)) = g x y)((¬ p (f X8))(X8 = g (f (f z)) z)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMZvbB92gisLoEQS4hfG4DJE8zvNAxvRcZC)
(g (g (g y (g (g z (f (g (g x (g (g z x) x)) z))) (g (f x) (g (g (f y) (g z (g (g (g (g y z) x) (g y x)) (f (g (g x (g y y)) x))))) (f z))))) (g (g (g (g y (f x)) x) (g y x)) z)) y = y)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMFpkPiiGtNTvSkwkqZRXrNKYBx8VERfqiD)
(∀X8 : set, p (g (g X8 (g (f (f (f X8))) (f (g (f x) (f z))))) z))((∀X8 : set, ∀X9 : set, ((∀X10 : set, (X8 = X8))(¬ r y X8))(∃X10 : set, ∃X11 : set, ((¬ r y X9)(x = X11))))(g x (g (g (g z y) y) (f y)) = g (g z (g x y)) x))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMS6oUhuPXaQfr4KnPhWtt5rc2J3bxEqgQy)
p (g x (g (f (g (g z (g (g (g (g (g y (f (f (g y (g z (g z (g z (f (g (g y (g y (g (f (g x (g (g x x) (g (f x) (g (g z (g (g z z) y)) (g y x)))))) (g (g z (g z (g (g (g x (g (f x) (g (g (g (g (g (g x y) (g x (f y))) z) (f (f (g y z)))) y) (g (f (f x)) (g x y))))) (g y (g y x))) (f (g (f z) y))))) y)))) y))))))))) x) (g x y)) x) y)) y)) y))(∃X8 : set, (X8 = X8)(∃X9 : set, ((∃X10 : set, ((∀X11 : set, (g z X9 = X11)q (g (g X10 X11) X11))(g z X8 = y)))(x = x))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMKygq7bLv7vXb4qz3c7Ds7zyWYD4RFoLvn)
(g (g (g (g (g (g (g z (g (g (g y z) z) (f (g (g (g (g y y) (f x)) (g (f (g (g (g (g (g (g x (g z (f (g (f (g y (g x z))) (f (g y y)))))) (g (g (g y (g x (g (f z) z))) (g z (g z x))) (g (g z z) (g (g (f x) y) (f (f x)))))) (g z (g (g x (f (g (f x) x))) (g z (g z (g y y)))))) z) (g (f z) z)) (g (g (g x (g x (g x (g (f z) (g (f (g y z)) (g (g y (g (f (g (f (g (g (g x (g (g y (g (g (g (g (g (g (f z) (g x (g (g (f y) y) y))) (g y (g (f (g z (f (g (f x) (g (g z y) z))))) (g (g (g y y) (f (g (g (g x (g x (g (g z (g (f (g (g (g (g (f z) x) y) (g z y)) y)) (g y (g (g (g (g (g z (g (g y (f (g y y))) (g (f (g (g y x) x)) (f (g (g (f (g (g y x) z)) (g (g z y) (g (g (g y (f y)) (g (g (g (f (g (g (g z (f x)) x) (g (f (g z (f x))) x))) (g (g (g (g y (g z (g (g (g (g (g x z) x) z) y) (g (g (g z (g x (g x (f x)))) (f (g z (g (f x) z)))) x)))) (f (f x))) x) (g (g (f x) y) z))) (g (g (g (g (g (f x) (g (g (g (g z (g (f (g (f y) (g x (g (g y y) (g (g (g (g y x) (f z)) z) y))))) z)) (g (g (g z (f y)) z) (g x (g x (g z x))))) (g (f y) x)) y)) z) (g (g (g (g (g x z) y) (g x x)) x) x)) (f z)) (f (g (f (g (f y) (g (g (g y y) (f y)) (g (g x (g y x)) z)))) z)))) (f (f (f (f x)))))) z))) x))))) (f y)) y) (g (g (g x z) x) (g (g (g z (g (g (g (g (g (g x (g (g y x) x)) (f (g (f z) (g (f (g x x)) y)))) (g (g y (f (g (g (g (g (f z) x) (g (g (g (g x x) (g (f x) z)) z) (g z (f (g (g (g z z) (f (f x))) z))))) z) x))) z)) (g (g (g (g (g (f (f y)) z) z) z) z) (g x (g (g x x) x)))) y) y)) z) z))) z)))) (g (f x) y)))) y) (g z (f (f z)))))) z)))) z) (g (f x) y)) y) (g (f z) z))) (g (g (g (g (g (f (f x)) (f z)) y) y) y) (g (f x) x)))) (f y)) (g (g (g z (f (g (g x x) x))) (g (g (g (g (g x y) (g (g (g z (g (g (g (g (g z (g (g (f (f (g (g x (g y y)) y))) y) (g (f y) y))) (g (f z) (g x (g x (g (g y x) y))))) (g y y)) y) z)) y) (g z y))) (g z x)) (g z (g y y))) (g (g y (g (g y x) (g z (f (g z (g (g (g (f (g (f z) (g (g y (g (g x (f (g (g (g (g z (g (g (g y y) (g (g (g (f (f (g (g (g (g (g (g (f (g y (f (f x)))) x) y) x) (g y z)) y) (g (g (f (g y x)) y) (f z))))) z) (g z (f (f (g x (f x)))))) (f (g (f (g (f y) x)) z)))) y)) (g z (g (g z (g y x)) (g y z)))) z) x))) z)) z))) y) y) (f (g x y)))))))) z))) z))) x)) (g z y))) (f y))))))) (g z (f x))) y))) (g x (f (f (g x (g (g (g (g x z) (g z (f x))) (f x)) y))))))) (g z x))))) (g x z)) (g z z)) y) z) (g (f x) (g (f x) (g y (g y (g (g x (g x (g x x))) (g (g y z) x))))))) y = g (f (g (g (g y (g (g z (g y y)) x)) (g (g (g y z) (g x z)) (f (f (f (g (g (g z z) z) (g (f y) z))))))) y)) z)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMSjxA34VFr7MyeetZC3ta1mX1oEqVGErVi)
(p (g (g z x) x)(q x(∀X8 : set, ((∃X9 : set, p z)((∃X9 : set, ∀X10 : set, (g (f x) X10 = z))(∃X9 : set, ((X8 = g z x)(z = X8))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMG9avq1D9bwPBkS4EVvye4oKCLTHf1rB4y)
∃X8 : set, ((∃X9 : set, ((∃X10 : set, (((((∀X11 : set, (∃X12 : set, ∀X13 : set, (z = z)(X9 = X13))(¬ p (g X11 (g (g y X10) z))))(X10 = X10))p X9)((∃X11 : set, ((∃X12 : set, (X12 = f X12))((∃X12 : set, ∃X13 : set, (X9 = X9))p X9)))(∀X11 : set, q X10)))((∀X11 : set, (¬ q y)(∃X12 : set, (X11 = X10)))(∀X11 : set, (g (g z (g (g X8 y) (g X8 X8))) X10 = g X11 (f X8))(∃X12 : set, ∃X13 : set, ((x = X13)(∃X14 : set, r X11 X10)))))))(∀X10 : set, ∃X11 : set, ∀X12 : set, (∀X13 : set, ∀X14 : set, (∃X15 : set, ∃X16 : set, ((¬ p X14)(∀X17 : set, ∃X18 : set, ∀X19 : set, (X19 = g X16 X13)p X17)))((X12 = z)(x = X12)))(X11 = x))))p X8)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMXy5q4i2By4zoZuWZRKtzAQpXNaqfMcN6B)
∀X8 : set, (∃X9 : set, ((∃X10 : set, (q (g X10 X10)(¬ q X9)))((z = X9)(∀X10 : set, p X9)p X9)))((∀X9 : set, (X9 = g (g (f z) z) y))(z = z))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMZeV4brMBitny5Fed6CW92EZpTmu3vm1er)
(g z (g y (f (g (g (g y (g x (g z z))) (g (g (f (g (g (f (g (g (f (g (g z z) (g (f y) (f (f (f (g y (g (f (f (g (f (g y z)) (f (g z (g z (g (f (g (g x x) y)) x))))))) y)))))))) z) y)) (g x y)) x)) z) z)) z))) = f z)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMGNhMxnmLV7JQRp3Xzuui47LpxPqXb78Lx)
∀X8 : set, r (g (g (g y x) (f X8)) (f z)) y(∃X9 : set, ((∀X10 : set, (r X8 X8(z = g x z)))p X9)(¬ p y))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMZg8zv1z3PDU9eatZec54dva9ip3pXvQLq)
(g (g (g x z) (g (g (g (g x (g (g (g z (f x)) (g (g x z) (g (g z x) z))) (g x z))) (g (g y (f x)) y)) y) z)) y = g x (g (g (g x (g (g (g z z) y) (g (f x) (g (f (f y)) (g (g (f y) x) y))))) (f (f x))) x))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMQSshG5bFcr7hHdxH3kKGNcLyavvJXXRVb)
(∃X8 : set, ((f (f (f z)) = f X8)(((∃X9 : set, q X8)((∃X9 : set, ∀X10 : set, ∀X11 : set, (X10 = x))((z = f (f (f X8)))(∀X9 : set, (∃X10 : set, (X9 = z))(∃X10 : set, ∃X11 : set, (((∃X12 : set, (X9 = X11))(∃X12 : set, (¬ p (f X8))))(∀X12 : set, q (f X12)((∀X13 : set, ∃X14 : set, (((∀X15 : set, r (f X15) X10)(X10 = X11))(X13 = X12)))r (f (g X8 (f (f z)))) X11)))(∀X12 : set, p X8(r (g (g (f (f (g X10 X11))) X12) X9) X12(¬ p (f X11)))))))))(¬ p z))))(∃X8 : set, ∃X9 : set, ((¬ r z (g X9 (g x x)))(¬ r X9 (f z))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMHW9ua2hM8KncpauUcnc4o97jBQjYjxWHK)
∀X8 : set, (∃X9 : set, (¬ p z))((∃X9 : set, ((g (f (f (g X8 X8))) X8 = x)(∀X10 : set, ∀X11 : set, ∃X12 : set, (y = y)p (g y z))))(g (g x (f z)) x = z))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMc1vFsBW2q2tkgZpoQPvvbYGKCnRFwJuSj)
(y = g (g z (g (g x (g y (g x x))) (g (g (g y z) (f (g z x))) y))) (g (g y (g z (g y (g (g x x) (g y (f (f (g x x)))))))) y))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMW9aCVNpMoijkzmBu8fV77B9DR4HfkezNP)
((∃X8 : set, ∀X9 : set, (f y = z)(∀X10 : set, ∀X11 : set, (∀X12 : set, (X11 = g X10 X12))(∃X12 : set, ((X9 = f X11)(f (g X12 X8) = f x)))))(¬ p z))p (g x z)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMZd5bJzozKeWUzxvDSmNoRFyxdxoBpetNT)
∀X8 : set, ∀X9 : set, ∀X10 : set, (∀X11 : set, (∀X12 : set, (z = f y)p (f (f X9)))(¬ p (g (g (g X10 (g X8 X10)) X8) X9)))(∃X11 : set, q y)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random3_TMRhMmLVnJANDQLiXyjrRh7bfYmqnMkBKRE)
∃X8 : set, (((∃X9 : set, ∀X10 : set, (∃X11 : set, ((∀X12 : set, (p X9(∃X13 : set, (¬ q X10)))p (g X11 X9))p X11))(∃X11 : set, ((∀X12 : set, ∃X13 : set, ∃X14 : set, ((∀X15 : set, ((∃X16 : set, ∀X17 : set, (z = X14))(¬ p y))(¬ r X10 (f X12))(X15 = X14))(∃X15 : set, ((∀X16 : set, (∃X17 : set, (((X16 = X15)(¬ q X8))(X14 = X14)))(∀X17 : set, (∃X18 : set, ∃X19 : set, ((∀X20 : set, (X10 = X19)(∃X21 : set, q X11))(∃X20 : set, (X16 = x)p X17(∃X21 : set, (X20 = X15)(∀X22 : set, ∀X23 : set, ((X22 = X23)(∃X24 : set, ((X21 = X23)((¬ p X24)(∃X25 : set, (r X18 X14(X18 = X22)))))))(∀X24 : set, (¬ r X21 X23)))))))q X17))(X14 = X8)))))(X8 = z))))(p (f (f y))(g x (g y (f z)) = f x)))(∃X9 : set, (¬ p y)))
Proof:
The rest of this subproof is missing.
End of Section Random3