Beginning of Section Random2
Variable p : set β†’ prop
Variable f : set β†’ set
Theorem. (conj_Random2_TMWv3SVbM3eZ31azmqFc5rufdMCwpaCexpQ)
βˆ€X2 βŠ† f (f (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))), ((βˆƒX3 ∈ f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))), βˆƒX4 : set, atleast5 X4) ∧ ((βˆ€X3 βŠ† X2, ((Β¬ atleast5 X3) ∧ ((Β¬ atleast6 (f X3)) β†’ (Β¬ p X3)))) β†’ (βˆ€X3 ∈ X2, βˆ€X4 βŠ† βˆ…, ((((Β¬ atleast4 X4) ∧ (Β¬ p (ordsucc X2))) β†’ ((p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) β†’ ((p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) β†’ atleast3 βˆ…) β†’ (Β¬ equip X4 X4) β†’ (((Β¬ p βˆ…) β†’ (p X4 ∧ exactly3 X3)) ∧ (((Β¬ set_of_pairs (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ ((((p X3 β†’ (((Β¬ p βˆ…) β†’ ((Β¬ exactly4 X2) ∧ ((p (f βˆ…) ∧ (Β¬ p X2)) ∧ per_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ setsum_p X3)))) ∧ (Β¬ p X3)) β†’ (Β¬ p X4)) ∧ ((symmetric_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ p X6 β†’ (Β¬ p (𝒫 X6))) ∧ ordinal βˆ…) β†’ (Β¬ atleast6 X4))) ∧ atleast5 X3) β†’ (Β¬ p X4) β†’ (exactly5 X2 β†’ ((Β¬ SNo (⋃ (f X3))) ∧ atleast5 X4)) β†’ p X3) β†’ ((Β¬ eqreln_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((SNoLt (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) X5 β†’ (((SNo X5 ∧ (((Β¬ p X6) β†’ totalorder_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ exactly5 X8) β†’ p βˆ…) β†’ (((Β¬ p βˆ…) β†’ (Β¬ ordinal X5)) ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ exactly2 X5)))) β†’ (((p X6 β†’ (Β¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) β†’ (Β¬ p X5)) ∧ ((Β¬ exactly5 X2) β†’ (((Β¬ p X5) ∧ (p X5 β†’ (((Β¬ p X6) ∧ p X6) ∧ ((Β¬ setsum_p (f X6)) β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))))) ∧ PNo_downc (Ξ»X7 : set β‡’ Ξ»X8 : set β†’ prop β‡’ (((Β¬ exactly2 X6) ∧ ((Β¬ set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ X8 (f X6))) ∧ (Β¬ X8 βˆ…)) β†’ ((Β¬ p X7) ∧ (atleast5 X4 ∧ X8 (f (ordsucc X7))))) X4 (Ξ»X7 : set β‡’ atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))))) ∧ ((Β¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ((exactly5 X5 ∧ (((p X6 β†’ (Β¬ p (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) ∧ (X4 ∈ If_i (exactly4 X3 ∧ ((p X5 ∧ (βˆ… ∈ Sing (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (exactly3 X7 ∧ (Β¬ atleast6 X8))))) X5 X2)) ∧ (Β¬ p X6))) ∧ ((p X5 β†’ (Β¬ p X5)) β†’ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))))) ∧ SNo_ (f X3) X6))) ∧ (((Β¬ p X4) β†’ (Β¬ p X2)) ∧ (((((((exactly3 X3 ∧ TransSet (f (f (f X4)))) ∧ atleast6 X3) β†’ (Β¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ atleast4 X3 β†’ (Β¬ exactly3 (ap X4 βˆ…))) ∧ ((Β¬ p (f X3)) ∧ atleast2 X2)) β†’ ((Β¬ atleast4 X3) ∧ exactly4 X3)) β†’ (((nat_p X3 β†’ (((Β¬ p X3) β†’ (((Β¬ atleast4 βˆ…) ∧ (p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ ((Β¬ exactly4 (f X3)) ∧ PNoLe (proj1 X3) (Ξ»X5 : set β‡’ ((((Β¬ p X5) ∧ atleast4 βˆ…) ∧ (((Β¬ p X4) β†’ (Β¬ nat_p X4)) ∧ ((Β¬ p X4) β†’ (Β¬ p βˆ…)))) β†’ ((Β¬ p (f X3)) ∧ (Β¬ atleast2 X4))) β†’ p (ordsucc X3) β†’ (Β¬ TransSet X3)) X4 (Ξ»X5 : set β‡’ ((Β¬ p X4) ∧ (p X3 ∧ ((Β¬ nat_p X2) ∧ atleast2 (Inj0 βˆ…)))))))) ∧ (((Β¬ atleast4 X4) ∧ ((Β¬ p X3) β†’ ((TransSet X3 ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ ((((Β¬ p X4) β†’ exactly4 (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ atleast3 X3) ∧ (Β¬ p X2))))) β†’ exactly2 X3 β†’ ((p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ (p (UPair X4 X3) ∧ ((Β¬ SNoLe X4 X4) β†’ (Β¬ exactly3 X4)))) ∧ ((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ set_of_pairs X3))))) ∧ (Β¬ p X3)) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ p X3) ∧ (atleast6 X4 ∧ (((Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (((Β¬ nat_p X5) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ ((Β¬ set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ nat_p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))))) ∧ (p X4 β†’ (Β¬ p X3))) β†’ (Β¬ p X4)))))))) β†’ (p (f X3) ∧ (Β¬ p X4)) β†’ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ nat_p X4) β†’ nat_p X4))) β†’ (p (f X3) ∧ ((Β¬ exactly4 X3) ∧ (Β¬ p (f (f X3)))))) β†’ (Β¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ (Β¬ exactly3 (f X4))) ∧ (Β¬ p X2)) β†’ (Β¬ atleast2 βˆ…) β†’ p X4)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMPfGfGzourdwkEihmiHC8moc9ao7wdjb8m)
βˆƒX2 : set, ((((βˆƒX3 : set, ((X3 βŠ† Unj (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (βˆ€X4 : set, p X3 β†’ (exactly4 X4 ∧ (((Β¬ atleast5 (f (f X4))) ∧ (p X3 β†’ p X3 β†’ (Β¬ p (f X3)))) ∧ (p X4 β†’ ((((((Β¬ atleast4 (ap X3 (f X4))) β†’ (Β¬ p X4) β†’ (((((Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ atleast4 (Inj0 X3)) ∧ atleast4 X3) ∧ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ atleast2 X4) β†’ (Β¬ atleast4 X3) β†’ SNo_ X4 X3) β†’ (Β¬ atleast5 X3) β†’ (((Β¬ p (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ (PNoLt (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) (Ξ»X5 : set β‡’ (((Β¬ SNoLe X4 X5) β†’ (Β¬ p X2)) ∧ p βˆ…)) X2 (Ξ»X5 : set β‡’ setsum_p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ exactly3 X4)) ∧ nat_p X2)) β†’ atleast6 X3) β†’ (p X3 ∧ (Β¬ ordinal X3)))))))) ∧ (Β¬ tuple_p (f X2) (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) β†’ (βˆ€X3 : set, (((Β¬ p X2) ∧ (βˆ€X4 : set, ((PNo_downc (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ prop β‡’ ((((((equip βˆ… (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) ∧ atleast5 X5) ∧ ((((Β¬ p (f X3)) ∧ (Β¬ exactly2 X4)) ∧ X6 X5) ∧ (((X6 X4 ∧ (Β¬ p X4)) β†’ ((X6 X2 ∧ (((exactly2 X3 β†’ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (((((Β¬ TransSet βˆ…) ∧ (PNoLt X5 (Ξ»X7 : set β‡’ TransSet βˆ… β†’ p X5) X5 (Ξ»X7 : set β‡’ exactly3 X4) ∧ X6 X4)) ∧ (atleast4 X5 ∧ ((Β¬ p βˆ…) β†’ p X3))) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ X6 X5)) ∧ (atleast2 X3 β†’ (Β¬ p X5)))) ∧ atleast5 X4)) β†’ (Β¬ X6 βˆ…)))) β†’ exactly4 X5) ∧ ((p X5 ∧ (Β¬ atleast2 X3)) β†’ (Β¬ ordinal X4))) ∧ p X3) ∧ X6 X3) β†’ X6 X4) (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (Ξ»X5 : set β‡’ TransSet X2) β†’ (Β¬ atleast4 X4)) ∧ (((Β¬ p (f X4)) ∧ ((Β¬ p X3) ∧ (Β¬ SNo (f βˆ…)))) ∧ (Β¬ p X4))) β†’ (Β¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ ((Β¬ p X3) ∧ (p (f X4) β†’ ((((Β¬ p X3) β†’ (p X4 ∧ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ exactly5 βˆ…)))) β†’ nat_p X4) β†’ (p X4 ∧ ((((p X4 β†’ atleast4 (f (binunion X4 X2)) β†’ p X4) β†’ (Β¬ p X3)) ∧ ((p X4 ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (((Β¬ atleast6 X3) β†’ ((((((Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ p (f βˆ…) β†’ ((Β¬ p X3) ∧ (((p X4 ∧ (ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) β†’ ((p X4 β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ set_of_pairs X3 β†’ (Β¬ p βˆ…)) ∧ (Β¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))))) β†’ (setsum_p X4 ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ (Β¬ p X3)))) ∧ ((p X3 ∧ (p βˆ… ∧ (Β¬ p βˆ…))) β†’ p (f X3))) β†’ (Β¬ setsum_p X2)) β†’ p X4) β†’ exactly4 X4) β†’ ((((Β¬ (X4 βŠ† X3)) β†’ (p X3 β†’ atleast3 (f (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) β†’ (PNoEq_ X4 (Ξ»X5 : set β‡’ exactly4 (f (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) (Ξ»X5 : set β‡’ (p X5 ∧ p X4) β†’ reflexive_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ exactly4 (Unj X7))) ∧ ((eqreln_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ (exactly4 X4 β†’ atleast6 (f X2))) ∧ (Β¬ atleast3 X2)))) ∧ (((p X3 ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) X4)) β†’ ((Β¬ set_of_pairs X4) ∧ (TransSet X2 ∧ ((Β¬ nat_p (f (f βˆ…))) β†’ setsum_p X4))) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (Β¬ p X3) β†’ ((((((((atleast5 X3 β†’ (Β¬ p X2) β†’ (Β¬ nat_p X3)) ∧ ((((Β¬ atleast3 X3) ∧ (exactly2 X3 β†’ (((exactly5 βˆ… β†’ ((((Β¬ atleast3 X3) ∧ (Β¬ p X3)) ∧ ((Β¬ exactly2 X4) β†’ (Β¬ atleast2 X4))) ∧ p X4)) β†’ p X4) β†’ p X4) β†’ (p X4 ∧ (Β¬ TransSet X4)))) β†’ p X3) β†’ exactly4 X3)) ∧ p X3) β†’ (Β¬ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ (p X4 β†’ exactly4 X2) β†’ (Β¬ SNoLt X2 X3)) ∧ (p (f (f X3)) β†’ (Β¬ p βˆ…))) ∧ (Β¬ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))) ∧ (atleast2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ (p X3 ∧ (Β¬ p X3))))) ∧ exactly2 X3))) β†’ p X2 β†’ (atleast3 X4 ∧ exactly2 X2)))) β†’ (p X4 ∧ exactly2 X2) β†’ atleast3 X4)))) β†’ (βˆƒX4 ∈ X3, TransSet (f X4))) β†’ (p (binrep X2 X3) ∧ (Β¬ exactly4 X2))) β†’ (βˆƒX3 : set, ((X3 βŠ† f X2) ∧ (βˆƒX4 : set, ((X4 βŠ† X3) ∧ (((((Β¬ p X4) β†’ ((Β¬ p (binunion (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) X3)) β†’ (((((((Β¬ atleast4 βˆ…) β†’ exactly3 X4 β†’ (((((atleast5 X3 ∧ ((Β¬ tuple_p X2 X4) β†’ p (f X4))) ∧ (Β¬ exactly4 X4)) ∧ p X2) ∧ ((p X4 ∧ ((Β¬ p X4) β†’ (Β¬ p X3))) β†’ ((p X4 ∧ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) ∧ ((Β¬ p X2) β†’ ((Β¬ exactly2 X3) ∧ nat_p X3)))) ∧ (Β¬ atleast4 (f X3))))) ∧ p X2)) ∧ p X4) β†’ ((Β¬ p (setexp (f X2) βˆ…)) ∧ (Β¬ atleast4 (ReplSep X2 (Ξ»X5 : set β‡’ ((Β¬ p X4) ∧ atleast5 X4)) (Ξ»X5 : set β‡’ X5)))) β†’ ((p X4 ∧ (nat_p X3 β†’ (Β¬ p X4))) ∧ ((Β¬ p X4) β†’ (((Β¬ p X2) β†’ ((Β¬ set_of_pairs X3) β†’ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ p (⋃ X4)) ∧ (Β¬ p X4))))) ∧ (Β¬ TransSet X3)) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (((Β¬ p X3) β†’ ((((f βˆ… ∈ X4) β†’ (Β¬ exactly2 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ p (f X2) β†’ ((((nat_p X4 ∧ ((((Β¬ setsum_p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ exactly3 X3)) ∧ p X3)) ∧ ((Β¬ SNo X3) ∧ (((p X2 β†’ (Β¬ atleast3 X3)) β†’ set_of_pairs (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (Β¬ p (Sing X3))))) β†’ p X3 β†’ (Β¬ trichotomous_or_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((atleast6 X6 ∧ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ exactly3 X5)) ∧ p X6)))) ∧ (Β¬ (f X4 ∈ X4)))) β†’ exactly5 βˆ…) ∧ (Β¬ set_of_pairs X4))) ∧ ((p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ p (f X4))) β†’ (Β¬ p X3))))) β†’ (TransSet X4 ∧ ((Β¬ p X4) ∧ (Β¬ p X4)))) ∧ (((Β¬ PNo_upc (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ prop β‡’ (((((X6 X4 β†’ (Β¬ p (f X5))) β†’ X6 X4) ∧ exactly4 X3) ∧ ((Β¬ exactly5 X5) β†’ (Β¬ p X2))) ∧ (Β¬ X6 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) X4 (Ξ»X5 : set β‡’ ((Β¬ p X4) ∧ (p βˆ… ∧ p X3)))) ∧ ((p βˆ… β†’ atleastp (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) (f X3)) β†’ (Β¬ SNo (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) β†’ p X2)) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) ∧ atleast6 X3)))))) ∧ (βˆ€X3 : set, (Β¬ SNo (f (f βˆ…))) β†’ (Β¬ (X3 ∈ X3))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TML9chQ7pBnmLnJnGW5vSgHh8BXUM622Aqi)
(((βˆƒX2 : set, (TransSet (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) ∧ ((βˆ€X3 : set, (βˆƒX4 : set, ((((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ (((((Β¬ p X3) β†’ p X3) ∧ p X4) ∧ ((Β¬ atleast2 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ atleast4 X3))) ∧ (((((Β¬ exactly3 (f X4)) ∧ (Β¬ p X4)) β†’ p X3 β†’ ((((Β¬ p βˆ…) ∧ (Β¬ p X3)) β†’ (p X4 β†’ (Β¬ p X4)) β†’ atleast3 X3 β†’ TransSet (f X2)) β†’ ((Β¬ p X4) ∧ ((Β¬ p (UPair (If_i ((Β¬ p (f X2)) β†’ nat_p βˆ…) X2 (f (f βˆ…))) X3)) β†’ (Β¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))))) β†’ p X3) ∧ (p X3 β†’ ((Β¬ p X3) ∧ (((((((Β¬ p (f βˆ…)) β†’ p (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ p X4) ∧ atleast4 X2) β†’ p X2)))) β†’ (((Β¬ atleast3 X4) ∧ ((exactly2 X3 ∧ ((((Β¬ exactly5 βˆ…) β†’ p X3) ∧ (Β¬ atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ atleast4 X4))) β†’ (Β¬ p X3))) ∧ exactly4 X3)))) β†’ ((Β¬ p X4) ∧ setsum_p X3)) ∧ (Β¬ p X4))) β†’ exactly3 (f (f X3))) ∧ (βˆƒX3 : set, (βˆ€X4 : set, (((atleast3 X4 ∧ p X4) β†’ setsum_p X3 β†’ atleast3 X3) ∧ atleast4 (𝒫 X4)) β†’ ((Β¬ p (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) ∧ ((Β¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ p (ordsucc X3)) β†’ ((Β¬ atleast2 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (((p (f (Pi X4 (Ξ»X5 : set β‡’ proj0 (Inj0 X4)))) ∧ (Β¬ ordinal X4)) ∧ ((((Β¬ SNo (f (f (f X3)))) β†’ (((((Β¬ (X3 = X2)) β†’ ((((Β¬ p X2) ∧ (Β¬ atleast4 (lam (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (Ξ»X5 : set β‡’ X5)))) β†’ (Β¬ p (ReplSep (Inj1 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) (Ξ»X5 : set β‡’ TransSet (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) (Ξ»X5 : set β‡’ X2)))) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) ∧ p X4) β†’ (((p (f X2) β†’ atleast6 X3) ∧ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ ((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ p (binunion (Sing βˆ…) X3)) ∧ SNo (SNoLev βˆ…))) β†’ exactly4 (f X4) β†’ PNoLt X3 (Ξ»X5 : set β‡’ (exactly4 X5 ∧ atleast4 βˆ…)) (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (Ξ»X5 : set β‡’ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ (((Β¬ p (f X3)) β†’ SNo X3) ∧ (Β¬ atleast2 X5))) β†’ (Β¬ p X3))) ∧ (((SNo X3 β†’ (((p X3 β†’ TransSet X3 β†’ p X3 β†’ ((Β¬ p X2) ∧ (Β¬ exactly5 (f X2)))) β†’ (Β¬ exactly5 X3)) ∧ (exactly5 X2 ∧ ((Β¬ setsum_p X3) β†’ (((Β¬ setsum_p X4) ∧ (Β¬ (βˆ… = X2))) ∧ p X4))))) β†’ (Β¬ ordinal X4)) ∧ ((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ atleast6 X3)))) β†’ (Β¬ p X2) β†’ (((Β¬ p (𝒫 X3)) ∧ ((p X3 β†’ ordinal X3) ∧ ((p X4 β†’ (equip X2 X4 β†’ (Β¬ p (ordsucc X3))) β†’ ((Β¬ p X3) ∧ (X3 βŠ† X4))) β†’ (Β¬ atleast4 (SetAdjoin X3 X2))))) β†’ (((Β¬ p X3) ∧ (Β¬ p X2)) ∧ ((((Β¬ atleast6 X4) β†’ (Β¬ p X4) β†’ ((Β¬ nat_p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ p X2)) β†’ (Β¬ exactly3 (f (f X4)))) β†’ (X3 ∈ X4)))) β†’ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast2 X3))) β†’ ((p X3 ∧ ((Β¬ atleast2 (Inj1 X3)) ∧ ((((((Β¬ atleast3 X4) ∧ (p βˆ… ∧ (Β¬ p X3))) β†’ PNo_downc (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ prop β‡’ (atleast6 X4 ∧ (Β¬ exactly5 X3))) X3 (Ξ»X5 : set β‡’ ((Β¬ p X3) ∧ (Β¬ p X3)))) ∧ (((exactly4 X4 β†’ ((setsum_p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ p (f X4)) β†’ (atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ (atleast5 X4 ∧ (Β¬ p βˆ…)))) β†’ ((p X3 β†’ (Β¬ irreflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((((Β¬ p X3) β†’ ((((Β¬ p X5) ∧ atleast6 X5) β†’ (((Β¬ p X5) ∧ (X4 ∈ X5)) ∧ (PNoLt X4 (Ξ»X7 : set β‡’ (Β¬ p (f (f X7)))) X5 (Ξ»X7 : set β‡’ (Β¬ p βˆ…)) ∧ (Β¬ p X6))) β†’ (((Β¬ exactly4 X5) β†’ (Β¬ p X3)) ∧ ((((Β¬ p X5) β†’ (p X5 ∧ (Β¬ atleast5 X5)) β†’ SNo_ X5 X2 β†’ p X5) ∧ (Β¬ set_of_pairs X5)) β†’ equip X5 X6))) β†’ (Β¬ p X3)) β†’ (Β¬ p X5) β†’ p X5) β†’ (Β¬ SNo X6) β†’ (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))) = X6)) β†’ exactly2 X4) β†’ p X5))) ∧ (p X2 β†’ (Β¬ atleast5 X2)))) β†’ p βˆ…) ∧ p X4)) β†’ (Β¬ p X4)) ∧ (Β¬ exactly4 (binunion X4 X3))))) ∧ p X3))))))) β†’ p X3)))) β†’ ((((βˆƒX2 : set, ((βˆ€X3 : set, (βˆƒX4 : set, ((X4 βŠ† X3) ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ (Β¬ p X2)))) β†’ (βˆ€X4 : set, (((((Β¬ atleast5 X3) β†’ setsum_p X4) ∧ (Β¬ exactly4 X3)) β†’ ((Β¬ atleast3 X2) ∧ (exactly5 X3 β†’ ((atleast2 X2 ∧ (Β¬ p (⋃ βˆ…))) ∧ atleast4 X2))) β†’ p X3 β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ ordinal (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) ∧ (Β¬ p (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))) ∧ p (f (f (f (f βˆ…))))) β†’ ((βˆƒX2 ∈ f (f βˆ…), βˆ€X3 : set, βˆƒX4 : set, ((X4 βŠ† βˆ…) ∧ (Β¬ tuple_p X3 X3))) ∧ (βˆ€X2 : set, βˆƒX3 ∈ X2, βˆƒX4 ∈ f X3, (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) ∧ exactly4 (f X2))))) ∧ ((βˆ€X2 : set, βˆƒX3 : set, ((βˆ€X4 : set, (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ p βˆ… β†’ (Β¬ nat_p X2)) ∧ (Β¬ reflexive_i (Ξ»X4 : set β‡’ Ξ»X5 : set β‡’ (Β¬ nat_p X5) β†’ (p (f (f X4)) ∧ TransSet X5))))) ∧ (βˆ€X2 ∈ binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…), βˆƒX3 : set, ((βˆ€X4 : set, p X4 β†’ (Β¬ atleast3 X4)) ∧ (βˆƒX4 : set, (Β¬ p X3))))))) ∧ (p (f βˆ…) β†’ (βˆ€X2 βŠ† f (f (SetAdjoin (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (f βˆ…))), βˆƒX3 : set, (((βˆ€X4 βŠ† X2, p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ (βˆ€X4 ∈ X3, (Β¬ atleast2 X4))) ∧ (βˆƒX4 ∈ f (f X3), ((Β¬ p X2) ∧ (Β¬ p (f X4))))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMdoopWoA9jfqVyB2wh3mJFCWBhMvSh8fgP)
((βˆ€X2 : set, (βˆƒX3 : set, ((βˆƒX4 : set, ((Β¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ set_of_pairs X3))) ∧ (((βˆƒX4 : set, ((X4 βŠ† X3) ∧ ((Β¬ ordinal X2) ∧ (Β¬ set_of_pairs X3)))) ∧ ((p X2 β†’ (βˆƒX4 : set, (exactly5 X3 ∧ ((p X3 β†’ p X4) β†’ (Β¬ TransSet X4)))) β†’ (βˆ€X4 : set, ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))) β†’ (p X3 ∧ (βˆ€X4 βŠ† f (Sing βˆ…), ((p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ p X3) ∧ ((((((Β¬ exactly3 X3) ∧ (Β¬ p X2)) β†’ (((exactly3 X4 ∧ (Β¬ p X4)) ∧ atleast4 X4) ∧ (((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ tuple_p X4 X4) ∧ atleast5 X4))) β†’ (Β¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((((atleast5 X2 β†’ (((p X4 β†’ (((Β¬ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ p X4) ∧ p X4) β†’ p X3) ∧ ((atleastp (𝒫 X4) X3 ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ atleast3 X3 β†’ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p (nat_primrec X5 (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ X8) X3))) β†’ ((Β¬ p X3) ∧ (SNo_ X3 X4 ∧ (exactly3 βˆ… ∧ ((((((p (f (SNoElts_ (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) β†’ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) β†’ ((p X4 ∧ (exactly3 (f X4) β†’ (equip X3 X4 ∧ (p (V_ X2) ∧ (((p X4 β†’ (Β¬ p X4) β†’ set_of_pairs X4 β†’ ((atleast2 X2 β†’ exactly2 X3) ∧ p X4)) ∧ (((Β¬ exactly2 βˆ…) ∧ ((Β¬ p X3) β†’ (Β¬ SNo X3))) β†’ (Β¬ SNo X3))) ∧ (exactly3 X4 β†’ p (f βˆ…))))))) β†’ (Β¬ p X2)) β†’ ((((Β¬ exactly1of2 (p X4 ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) (Β¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) β†’ p X4) β†’ (Β¬ exactly2 (f X3))) ∧ (p (V_ (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) β†’ ((Β¬ atleast2 X3) ∧ ((((Β¬ p X4) ∧ (strictpartialorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (atleast3 X6 β†’ (((Β¬ p X2) ∧ (((p X5 β†’ exactly5 X6) ∧ ((atleast4 X4 β†’ (((Β¬ p X6) ∧ ((Β¬ atleast6 (𝒫 (f X6))) ∧ ((((((((Β¬ p X5) ∧ ((exactly2 X6 β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) β†’ (((((p X5 β†’ (Β¬ exactly3 X2) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ p X2) β†’ p X6) β†’ ((Β¬ exactly5 X4) ∧ (Β¬ p X6)) β†’ atleast6 X6) β†’ p X6 β†’ (Β¬ atleast3 X4)) ∧ stricttotalorder_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (((((p X4 ∧ (set_of_pairs X2 ∧ ((Β¬ atleast3 (Sing X7)) ∧ (p X8 β†’ (Β¬ p X6))))) ∧ (p X8 β†’ (p (V_ X7) ∧ (Β¬ (X8 βŠ† X7))))) ∧ ((Β¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (nat_p βˆ… ∧ (Β¬ nat_p X5)))) ∧ ((Β¬ p X8) β†’ ((Β¬ atleast2 X2) ∧ ((Β¬ atleast2 X7) ∧ (((((((((ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) β†’ (p X8 ∧ p (⋃ X3))) β†’ (((Β¬ nat_p (f (f X5))) ∧ (((setsum_p X7 β†’ atleast6 X7) β†’ p X5) ∧ (Β¬ p X7))) ∧ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ ((SNo βˆ… β†’ nat_p X8) ∧ ((Β¬ p X8) β†’ (nat_p (f X7) ∧ p X5)))) β†’ (p X7 β†’ (Β¬ p X7)) β†’ ((Β¬ ordinal βˆ…) β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ p X8)) ∧ atleast6 X4) ∧ (Β¬ p X4)) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (((atleast6 (⋃ X7) ∧ (((Β¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ atleast4 X2) ∧ (p X8 ∧ p X7))) ∧ (Β¬ p X7)) β†’ atleast4 X4)) ∧ ((Β¬ p X8) ∧ (Β¬ equip X8 X8))) ∧ exactly3 X6))))) ∧ (p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ atleast5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))))) ∧ ((Β¬ p (V_ X6)) β†’ ((setsum_p X6 ∧ (TransSet (ordsucc X5) ∧ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ p X5) β†’ atleast3 X6))) β†’ (Β¬ exactly5 X6)) ∧ ordinal X6) β†’ (Β¬ nat_p βˆ…)) β†’ (Β¬ set_of_pairs X6) β†’ (p X6 ∧ (p X5 β†’ (p X2 ∧ ((Β¬ p X2) ∧ (((((Β¬ atleast6 X5) β†’ p X5) ∧ (Β¬ atleast5 (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ p X3)) β†’ (Β¬ p βˆ…)))) β†’ (Β¬ exactly5 X5) β†’ (Β¬ p X5))) β†’ trichotomous_or_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ p X8)) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) ∧ (((exactly5 X6 ∧ ((Β¬ p X6) ∧ (TransSet X6 ∧ (((((((X6 βŠ† X5) ∧ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) β†’ (exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ ((Β¬ atleast5 X6) β†’ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ p (ordsucc X3)) β†’ ((Β¬ atleast3 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ ((atleast5 X6 ∧ ((p X6 ∧ ((Β¬ p X5) ∧ (p X6 ∧ (Β¬ p X3)))) β†’ (Β¬ p X5) β†’ (Β¬ p X2) β†’ exactly4 X6)) ∧ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))) β†’ (exactly2 X4 ∧ p X6)) ∧ (Β¬ SNo (proj0 X6))) ∧ ((Β¬ p X4) ∧ ((Β¬ p X5) β†’ (Β¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))))) β†’ (((Β¬ ordinal (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (p X6 ∧ ((atleast6 X5 β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ p X6)))) ∧ (((Β¬ atleast3 X5) ∧ p X4) ∧ (f X4 βŠ† X5)))) ∧ (Β¬ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))))) ∧ ((Β¬ atleast3 X5) β†’ ((Β¬ exactly4 X6) ∧ p X4) β†’ (p X6 ∧ (nat_p X6 ∧ (Β¬ p X5))))) β†’ ((Β¬ p X5) ∧ (Β¬ p X6))))) β†’ (setsum_p (f X2) ∧ ((Β¬ atleast5 X6) β†’ p X5)))) β†’ (Β¬ SNoLt X2 (PSNo X6 (Ξ»X7 : set β‡’ ((((Β¬ p X6) ∧ ((((Β¬ exactly3 X2) ∧ atleast5 X6) β†’ (Β¬ p X7)) β†’ (((p X6 β†’ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) β†’ ((Β¬ SNoLe (ap X6 (f X2)) X6) ∧ (X3 ∈ X6))) β†’ p X6) ∧ (Β¬ atleast6 (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))))) β†’ (Β¬ p X6)) ∧ (((p X6 β†’ p X7) β†’ (Β¬ exactly3 (f X6))) ∧ (Β¬ p X7)))))))) ∧ (Β¬ exactly4 (f (𝒫 X6))))) β†’ (Β¬ p X5)) β†’ (Β¬ p X3))) ∧ (p βˆ… ∧ (Β¬ p (f βˆ…)))) ∧ (p X2 ∧ exactly4 X2)))))) ∧ (p X3 ∧ p X4)) β†’ (Β¬ p X3)) β†’ p βˆ…) ∧ ordinal X4) β†’ ((p X2 β†’ ((((Β¬ p X3) ∧ ((Β¬ p X3) ∧ (p (Sing X4) β†’ (((Β¬ p X3) β†’ (p X3 ∧ (p X3 ∧ (Β¬ p X4)))) ∧ ordinal βˆ…)))) β†’ p (f X4)) ∧ (Β¬ p X3))) ∧ (Β¬ exactly2 X4)))))) β†’ (Β¬ p X3))) ∧ (Β¬ set_of_pairs X4))) β†’ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) ∧ ((p X3 β†’ atleast2 X2) ∧ (p X3 ∧ (irreflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (p X2 ∧ (nat_p βˆ… β†’ ((p (f X6) ∧ SNo X5) ∧ nat_p X5))) β†’ (Β¬ equip (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) X6)) ∧ (Β¬ atleast3 (setminus (f (ap X3 X3)) X4))))))) β†’ SNo_ X3 X3) β†’ atleast2 X4)) ∧ (Β¬ p βˆ…))))))) β†’ (βˆ€X4 : set, (atleast5 X3 β†’ (Β¬ p X3)) β†’ (p X2 ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ ((Β¬ SNo_ βˆ… (binintersect X4 X3)) ∧ (Β¬ atleast3 (UPair (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) X3))) β†’ (Β¬ p (f X3)))))))) β†’ (βˆ€X3 βŠ† X2, βˆƒX4 : set, ((X4 βŠ† βˆ…) ∧ ((Β¬ TransSet X4) ∧ atleast3 βˆ…)))) ∧ ((βˆƒX2 ∈ V_ βˆ…, p (f (setprod (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) X2))) ∧ (Β¬ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMXqWqqXzQ3NLxWJhTMG2iUtcQLWocMTLhX)
βˆƒX2 : set, (((βˆ€X3 βŠ† setexp (f X2) X2, βˆ€X4 βŠ† X3, (p X3 ∧ (Β¬ p X4))) ∧ (βˆƒX3 : set, (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ (βˆ€X4 : set, ((((((X4 = βˆ…) β†’ exactly3 (f X4) β†’ (exactly3 X2 ∧ (((Β¬ atleast6 βˆ…) β†’ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ atleast3 (f (f X3))))) β†’ (Β¬ exactly5 βˆ…)) β†’ (p (𝒫 X2) ∧ p X3) β†’ ((((((Β¬ nat_p βˆ…) ∧ ((Β¬ (X3 = X4)) β†’ (Β¬ p X3))) β†’ atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ SNo X3) β†’ exactly4 (f X2) β†’ ((((exactly5 X3 ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ ordinal X4)) β†’ (Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p X5)))) ∧ (((Β¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (SNo X3 ∧ p X2)) β†’ ((atleast4 X3 ∧ (exactly4 (ordsucc X3) ∧ (p (f X4) β†’ ((Β¬ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ p X4)))) ∧ ((Β¬ p X3) β†’ ((p X4 β†’ p X3) ∧ (p (proj0 X4) β†’ (Β¬ exactly3 X4)))))))) ∧ (((((((p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ ((((Β¬ p X3) β†’ p X4 β†’ (Β¬ atleast5 X3)) β†’ (Β¬ setsum_p (f X2)) β†’ SNo X2) ∧ exactly4 X4)) β†’ p X2) β†’ (Β¬ atleast3 (f (f X4))) β†’ atleast2 (UPair (f (f (f X3))) X2) β†’ (p (Repl X3 (Ξ»X5 : set β‡’ X4)) ∧ (Β¬ ordinal X2))) ∧ (((Β¬ atleast2 X3) ∧ ((Β¬ p X3) β†’ (Β¬ p X2))) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((((Β¬ exactly3 X4) β†’ ((Β¬ p X2) ∧ p X3)) β†’ ((p βˆ… β†’ ((Β¬ p X4) ∧ ((((Β¬ p βˆ…) β†’ atleast4 X2) β†’ (((p X2 β†’ p X3) β†’ ((Β¬ ordinal X4) ∧ ((Β¬ p (f (f (f X3)))) ∧ set_of_pairs X2))) ∧ ((Β¬ (X4 ∈ X3)) β†’ exactly3 X4))) β†’ ((Β¬ p X4) β†’ (Β¬ p βˆ…) β†’ (Β¬ p X3)) β†’ (Β¬ atleast5 X4)))) ∧ ((TransSet X3 ∧ (((nat_p X4 ∧ atleastp X2 X3) β†’ ((Β¬ p (setprod X2 X2)) ∧ atleast2 βˆ…)) β†’ (((p (f X4) ∧ (Β¬ exactly4 X3)) β†’ ((p (UPair X3 (Inj1 (f X2))) β†’ ((Β¬ p X4) ∧ (Β¬ p X3)) β†’ (exactly4 X4 β†’ (p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) ∧ ((Β¬ exactly3 X3) β†’ ((Β¬ atleast3 X3) ∧ (Β¬ nat_p X3)) β†’ (Β¬ stricttotalorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ… βŠ† X5)))))) β†’ p X2 β†’ (SNo X4 β†’ (Β¬ SNo X3)) β†’ ((Β¬ p (V_ X3)) ∧ (atleast4 X4 ∧ ((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast6 X2) β†’ (Β¬ p X2))))) ∧ p (f X3))) ∧ (Β¬ atleast4 X3)))) ∧ ((Β¬ atleast4 X2) ∧ ((atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (((Β¬ set_of_pairs X3) β†’ ((Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ exactly3 X5 β†’ (Β¬ atleast6 X6))) ∧ TransSet (f X4))) β†’ p X3)) ∧ p X2)))) β†’ (atleast6 X3 ∧ (Β¬ TransSet X4))) β†’ (Β¬ atleast5 (f X3)))) ∧ (Β¬ atleast3 X3)) β†’ atleast3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ (Β¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ p X4))))) ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMaGoYyR7LEEd8ArrJUuTmxecbNsSK2fHm8)
(βˆƒX2 : set, ((X2 βŠ† f (Inj1 (f (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))) ∧ (βˆƒX3 ∈ X2, βˆƒX4 : set, (SNoEq_ (f X2) (V_ X4) X3 ∧ p X3)))) β†’ (βˆƒX2 : set, βˆ€X3 : set, βˆƒX4 ∈ f X3, (Β¬ exactly2 X2))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMFLEHTibZT6RqZDfZoy9ciqK8Lk8uqXkgz)
βˆƒX2 : set, ((Β¬ p (f (f (f (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))))) ∧ ((βˆƒX3 ∈ f (f (setminus (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) X2)), atleast2 X2) β†’ ((Β¬ exactly3 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ (βˆƒX3 : set, βˆƒX4 ∈ X3, (Β¬ exactly2 (SNoLev βˆ…))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMWNJVuZuRma9t57rxUSbiyo2ox4uUs44Fy)
((βˆ€X2 βŠ† βˆ…, (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)) βŠ† f X2)) ∧ (βˆ€X2 : set, ((βˆ€X3 ∈ f (f (f (f X2))), atleast5 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p X2)) β†’ (βˆ€X3 : set, (βˆƒX4 : set, ((((Β¬ p βˆ…) ∧ atleast5 X3) β†’ (Β¬ exactly3 (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ (βˆ€X4 ∈ X2, p X3 β†’ atleast3 X2))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMPECRKSuiQJGFYQBiYhwR3RemMX5fhNwtQ)
βˆ€X2 βŠ† binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)), (TransSet βˆ… ∧ (exactly3 βˆ… β†’ (βˆƒX3 : set, (((βˆ€X4 βŠ† binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…, ((Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ (Β¬ atleast3 X4))) ∧ (βˆƒX4 : set, ((p X4 β†’ (p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ atleast2 βˆ…)) ∧ ((Β¬ atleast5 X4) ∧ (f X3 = X4))))) ∧ (βˆ€X4 ∈ X3, (Β¬ p X4))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMXDSQpwAARbtWZzbcFckfwWxvYgsnQnqFq)
βˆ€X2 : set, βˆƒX3 : set, ((βˆƒX4 ∈ X3, ((Β¬ exactly5 X4) ∧ (Β¬ set_of_pairs X2)) β†’ (Β¬ p (f βˆ…)) β†’ (atleast2 X4 ∧ exactly4 (f X4))) ∧ (Β¬ p X2))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMH8STG7VZvR7VRBA85rZy5Z71WRmLD5oEK)
((βˆ€X2 : set, (((Β¬ exactly5 (mul_nat (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) βˆ…)) ∧ (βˆƒX3 : set, (((βˆƒX4 : set, (p X4 ∧ (((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ (((p (Unj X3) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ ((Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (p X2 β†’ p X4))) ∧ ((Β¬ TransSet X3) β†’ (Β¬ setsum_p X3) β†’ (Β¬ p X3)))) β†’ (Β¬ p βˆ…)) β†’ ((p X4 ∧ (Β¬ setsum_p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ (p X4 ∧ (Β¬ p X3)))))) ∧ (p X3 β†’ (βˆƒX4 : set, exactly5 X4))) ∧ (((βˆƒX4 : set, ((((Β¬ p (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ p X2) β†’ ((((((Β¬ totalorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p X2))) β†’ ordinal βˆ…) β†’ (Β¬ p X2)) β†’ ((((((Β¬ atleast4 X4) β†’ (Β¬ p X3)) ∧ ((Β¬ p X4) ∧ (p X4 β†’ ((ordinal X4 ∧ atleast4 (f X2)) ∧ (((Β¬ TransSet X4) β†’ TransSet X4) ∧ (Β¬ p X3)))))) β†’ (Β¬ p X4)) ∧ atleast6 X2) ∧ atleast3 X4)) ∧ (Β¬ SNo X3)) ∧ ((Β¬ atleast6 X3) β†’ (Β¬ p X4)))) ∧ (p X4 β†’ (((((((Β¬ (X2 ∈ f X4)) ∧ (Β¬ exactly5 X2)) ∧ (Β¬ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ ((((((atleast3 X3 ∧ atleast2 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (((Β¬ p X2) ∧ ((((X2 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) β†’ nat_p (f X4) β†’ (((PNoLt X3 (Ξ»X5 : set β‡’ (X4 ∈ X5)) X4 (Ξ»X5 : set β‡’ (atleast4 X5 ∧ (((exactly2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ ((Β¬ p X4) ∧ (p X4 β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) β†’ ((atleast4 X3 β†’ ordinal X4) ∧ (TransSet X5 ∧ (((Β¬ exactly4 X3) β†’ p X4) ∧ (Β¬ ordinal X3))))) ∧ (Β¬ exactly3 X4))) β†’ trichotomous_or_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (Β¬ atleast4 X6))) β†’ p X4) β†’ (Β¬ p X3)) β†’ exactly3 βˆ…) β†’ nat_p X2) ∧ (Β¬ exactly3 X4)) β†’ (Β¬ p (f X4)))) ∧ ((Β¬ atleast2 X3) ∧ (set_of_pairs X3 ∧ (((Β¬ set_of_pairs X4) ∧ (p X4 ∧ ((((Β¬ p X4) ∧ ((Β¬ exactly4 X2) β†’ (Β¬ TransSet X3))) ∧ ((Β¬ p X4) ∧ atleast6 βˆ…)) β†’ (Β¬ nat_p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))))) ∧ (atleast2 X4 β†’ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))))) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (((Β¬ p (f X2)) β†’ (Β¬ TransSet X3)) ∧ ((((atleast4 X4 ∧ p X3) ∧ p X3) ∧ (((((p (mul_nat (proj1 βˆ…) (f X4)) β†’ ((Β¬ TransSet (UPair (f X3) X4)) ∧ (Β¬ p X3))) ∧ (p (f (f X2)) β†’ TransSet X4 β†’ (((Β¬ exactly3 (f (⋃ X3))) β†’ exactly4 X3) ∧ ((((atleastp X3 X4 β†’ (Β¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ atleast3 (f X4)) β†’ (Β¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (((Β¬ atleast2 X4) β†’ p X2) β†’ ((Β¬ p X3) ∧ (Β¬ p X2)))) β†’ p βˆ…)))) ∧ (p (f X3) β†’ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) ∧ (Β¬ ordinal (f X4))) ∧ (p X3 β†’ (Β¬ TransSet X3) β†’ exactly5 X4))) ∧ p X2))) ∧ (p X4 ∧ ((Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (((Β¬ exactly4 X4) ∧ (p X4 ∧ (Β¬ p (f X3)))) β†’ ((Β¬ p X4) ∧ ordinal X2))))) ∧ (Β¬ atleast5 X4))) β†’ p X4) β†’ (((((SNo (f (f (f (f (f (Inj1 X4)))))) β†’ p X3 β†’ (Β¬ (X4 ∈ binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ p (Inj0 (f X4))) ∧ (Β¬ TransSet X3)) β†’ ((Β¬ p (V_ (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) ∧ (((Β¬ p X4) β†’ (Β¬ nat_p X2)) ∧ (((exactly2 X4 β†’ ((((p X4 ∧ (Β¬ p (f X4))) β†’ (((Β¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (X2 ∈ binrep X4 X3)) β†’ (Β¬ p X4)) β†’ (Β¬ tuple_p βˆ… X3)) ∧ (nat_p βˆ… ∧ ((Β¬ atleast4 X4) β†’ TransSet (⋃ βˆ…))))) β†’ atleast2 X3 β†’ ((Β¬ ordinal (setminus βˆ… (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ exactly5 X4)) ∧ (p X3 β†’ (Β¬ p X4))))) β†’ (Β¬ p X2)) ∧ exactly4 (f X3)) ∧ (p X4 ∧ (Β¬ p X3)))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))))) ∧ (βˆ€X4 : set, (p X3 ∧ exactly5 (f X4)) β†’ (SNoLe X2 X4 ∧ (((Β¬ p X3) ∧ (atleast3 X3 β†’ (Β¬ atleast3 X4))) β†’ p X4)))) β†’ (βˆ€X4 ∈ βˆ…, (Β¬ exactly3 X4)))))) ∧ (βˆ€X3 : set, (βˆ€X4 βŠ† f X2, (((Β¬ (X3 ∈ X3)) β†’ (Β¬ p X3)) ∧ exactly5 X3)) β†’ (βˆ€X4 βŠ† f (f X3), (SNo X3 ∧ ((Β¬ atleast2 X3) β†’ p X3))))) β†’ (βˆƒX3 : set, ((βˆƒX4 : set, ((X4 βŠ† f (f X2)) ∧ ((Β¬ p X3) ∧ ((Β¬ p X4) β†’ p X3)))) ∧ (βˆ€X4 : set, (((((((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (((p X3 ∧ (((Β¬ atleast4 X4) ∧ ((((p X3 β†’ atleast5 X3) ∧ ((exactly3 (binrep X3 (f (f X4))) β†’ ((((X2 = binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ exactly5 X3) β†’ ((Β¬ TransSet (f X4)) β†’ (atleast3 X3 ∧ (Β¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ ((((Β¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ atleast2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ p X2) ∧ ((atleast6 βˆ… β†’ (Β¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ (exactly5 (f (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p X2)) β†’ (Β¬ p X4)))) ∧ ((Β¬ p (f X3)) β†’ p X4 β†’ p X3))) β†’ (Β¬ p X4))) β†’ (Β¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ((Β¬ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ set_of_pairs X4)) ∧ ((atleast4 X3 ∧ (Β¬ p X4)) ∧ p (f X4)))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) ∧ (((p X3 ∧ SNo X4) β†’ p X4 β†’ (((TransSet X4 ∧ p X4) β†’ TransSet (f βˆ…)) ∧ (Β¬ p X4)) β†’ atleast2 X3) β†’ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (Β¬ p (f βˆ…)) β†’ p X3) β†’ (Β¬ atleast5 X3)) ∧ ordinal (f X4)) ∧ (p βˆ… ∧ ((p (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ p (𝒫 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ atleast4 X3)))) β†’ (atleast6 X3 β†’ ((((setsum_p X3 β†’ ordinal βˆ…) ∧ (Β¬ p X4)) ∧ (Β¬ p X2)) ∧ (((Β¬ exactly3 βˆ…) β†’ ((Β¬ p X3) ∧ (exactly4 X3 β†’ p (f βˆ…)))) ∧ exactly3 X4)) β†’ (Β¬ setsum_p X4)) β†’ (Β¬ SNo (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ (((ordinal βˆ… ∧ ((Β¬ p (f (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) β†’ ((p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) β†’ (Β¬ atleast2 X4)) ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))))) ∧ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (((((Β¬ exactly4 X2) ∧ atleast4 X3) β†’ (p (f (f X3)) ∧ (Β¬ exactly4 X3))) β†’ p X3) ∧ (Β¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))))) β†’ (Β¬ atleast3 X3)))) β†’ (βˆƒX3 : set, ((βˆ€X4 ∈ f (f X2), exactly3 (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ exactly2 (f X3)))) ∧ (βˆƒX2 : set, (((βˆ€X3 : set, βˆ€X4 : set, (p (Sing X4) ∧ (exactly2 X4 β†’ ((Β¬ p X4) ∧ atleast2 X2))) β†’ p X4) β†’ ((Β¬ exactly2 (f (ordsucc X2))) ∧ (βˆ€X3 ∈ βˆ…, βˆ€X4 ∈ X3, ((Β¬ setsum_p X2) ∧ setsum_p (f X3))))) ∧ atleast5 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMQyr8o3y2w5QoAGzcUxkoxTtxPrh1jgxAV)
((βˆƒX2 : set, ((Β¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (βˆƒX3 : set, ((X3 βŠ† f (f (f X2))) ∧ (βˆƒX4 : set, p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) β†’ ((Β¬ exactly2 X3) ∧ p (f X3))))))) β†’ (βˆƒX2 : set, nat_p (f X2))) β†’ (βˆƒX2 : set, ((X2 βŠ† binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ p X2))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMcHib4bK6yeTxFVGKF7Ppr7CdEqAsFa51a)
((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (βˆƒX2 : set, ((βˆ€X3 ∈ X2, βˆƒX4 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…, ((Β¬ nat_p X4) ∧ ((Β¬ nat_p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ ((Β¬ (βˆ… ∈ X3)) ∧ ((Β¬ atleast2 X4) β†’ ((Β¬ atleast2 X3) ∧ (Β¬ p X2)) β†’ (Β¬ setsum_p X4)))))) ∧ (βˆƒX3 : set, (βˆƒX4 : set, ((X4 βŠ† βˆ…) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ (βˆ€X4 : set, exactly4 X4))))) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (βˆƒX2 : set, (Β¬ atleast3 (f X2))) β†’ (βˆ€X2 : set, βˆ€X3 : set, (βˆƒX4 : set, p X4) β†’ (βˆƒX4 ∈ X2, ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ ordinal X2)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMQ1tQnas4fj59K9UafaJbvBtZPtvAbaNiF)
((βˆ€X2 : set, (βˆ€X3 : set, ((βˆƒX4 : set, ((((Β¬ p (SetAdjoin X4 X4)) β†’ atleast3 X4) ∧ (Β¬ p (f X3))) ∧ (p X4 β†’ ((Β¬ p X4) ∧ (p X2 β†’ ((((atleast5 X4 β†’ exactly4 X3) β†’ (((((Β¬ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ p X3 β†’ (TransSet (setexp (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) (ordsucc (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ (Β¬ ordinal βˆ…))) β†’ ((Β¬ p X4) ∧ (((Β¬ nat_p (f (f X2))) ∧ atleast4 X3) ∧ ((Β¬ p X4) β†’ (Β¬ exactly2 X2))))) β†’ ((Β¬ p X3) ∧ (((Β¬ p βˆ…) β†’ (Β¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ (((atleast2 (f X3) ∧ (SNo X3 β†’ exactly4 (combine_funcs X2 X3 (Ξ»X5 : set β‡’ X5) (Ξ»X5 : set β‡’ X5) X3) β†’ (((TransSet X4 ∧ (Β¬ p X2)) β†’ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p (binintersect (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) X4))) ∧ ((p (f (f X2)) β†’ (Β¬ p X4)) ∧ (Β¬ SNo_ X3 (proj0 (f X3))))))) ∧ p X4) ∧ (((((Β¬ exactly3 X3) β†’ (((p X4 β†’ (((Β¬ nat_p X3) ∧ (Β¬ atleast5 X3)) ∧ (Β¬ exactly5 X3))) β†’ (Β¬ exactly4 X4)) ∧ (Β¬ atleast5 (𝒫 X3)))) ∧ ((atleast6 (f (Sep βˆ… (Ξ»X5 : set β‡’ (Β¬ p X4)))) ∧ ((((p X4 β†’ atleast6 X2 β†’ ordinal X2) ∧ ((p βˆ… β†’ (Β¬ exactly4 βˆ…)) β†’ ((((((Β¬ atleast4 (f X2)) β†’ (Β¬ (X3 ∈ X2))) ∧ tuple_p X3 X3) β†’ (exactly4 βˆ… ∧ (atleast2 X4 ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))) ∧ (Β¬ exactly2 X3)) ∧ (p X4 β†’ (Β¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) β†’ nat_p (f X4) β†’ (Β¬ p (f (𝒫 βˆ…))))) β†’ (((Β¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ ((Β¬ PNoLt X2 (Ξ»X5 : set β‡’ p (⋃ X3)) X2 (Ξ»X5 : set β‡’ (((Β¬ p X4) ∧ ordinal X2) ∧ (Β¬ exactly4 X4)) β†’ p X5)) ∧ (((((((Β¬ p X2) ∧ ((Β¬ p X2) ∧ ((Β¬ p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ (atleast2 (f X4) β†’ p X3 β†’ ((((Β¬ atleastp X3 X4) β†’ (Β¬ p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) β†’ (Β¬ p (Inj0 βˆ…))) ∧ ((Β¬ TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ (atleast3 X3 ∧ ((p X4 β†’ (((exactly3 X4 ∧ ((((Β¬ exactly4 X2) β†’ SNo (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) β†’ ((Β¬ p X2) β†’ ((p X4 β†’ ((((exactly4 X2 β†’ ((((X3 βŠ† X3) ∧ (((Β¬ p X2) β†’ (Β¬ p X3)) ∧ ((((exactly4 X2 β†’ (Β¬ SNo (f (f (f X3))))) ∧ ((Β¬ atleastp X4 X4) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ (Β¬ p X3)) β†’ nat_p (𝒫 X4) β†’ SNo_ βˆ… X3))) ∧ (Β¬ p X3)) ∧ setsum_p βˆ…)) ∧ (atleast4 X2 ∧ ((((Β¬ exactly3 X3) ∧ (Β¬ exactly2 X2)) β†’ (Β¬ p (f X4))) ∧ (((((Β¬ p X3) β†’ p X4) β†’ (((Β¬ atleast2 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ p X4)) ∧ (set_of_pairs X2 ∧ PNoLt X4 (Ξ»X5 : set β‡’ setsum_p X5) X3 (Ξ»X5 : set β‡’ nat_p βˆ… β†’ (((Β¬ atleast4 (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) ∧ (Β¬ p X4)) β†’ (Β¬ exactly5 βˆ…)) ∧ p X4))))) ∧ (((Β¬ p X4) β†’ p (f (f X4))) ∧ atleast4 X4)) β†’ (Β¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ p X4)))) ∧ ((X4 ∈ X4) β†’ p (f X3))) ∧ (Β¬ p (SNoElts_ (⋃ X3))))) ∧ ((Β¬ p X3) ∧ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ (Β¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ p (binintersect (f (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) ∧ p βˆ…) ∧ exactly5 X3)) β†’ ((p X2 β†’ atleast6 X4) ∧ (Β¬ ordinal (f X2))))) β†’ ((Β¬ p X4) ∧ (p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))))))))) ∧ exactly3 X2) ∧ p X2) ∧ ((Β¬ atleast4 X2) β†’ (Β¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) β†’ ((((Β¬ nat_p X3) ∧ (Β¬ p X4)) ∧ atleast6 X2) ∧ (Β¬ p X3))) β†’ (Β¬ p (f (f X4)))))) ∧ ((Β¬ atleast5 (Sep2 X4 (Ξ»X5 : set β‡’ nat_primrec βˆ… (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ βˆ…) X4) (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p X6)))) β†’ p (f X3)))) β†’ ordinal X4)) ∧ p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) ∧ ((((Β¬ atleast2 (Inj1 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (((p X2 ∧ p (f βˆ…)) ∧ ((p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) ∧ (Β¬ nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ p βˆ…)) ∧ (Β¬ ordinal (f X2)))) β†’ (Β¬ exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ ((Β¬ atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p X4)) β†’ (Β¬ p X2))) β†’ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) β†’ (Β¬ p X4)) ∧ exactly5 (f (V_ X3)))) ∧ (set_of_pairs (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) ∧ (((Β¬ exactly2 X4) β†’ (Β¬ exactly4 X4)) β†’ atleast5 X4))) ∧ (exactly2 X3 ∧ (Β¬ p X3))) β†’ ((Β¬ set_of_pairs X2) ∧ (Β¬ exactly5 (binrep X4 X3))) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))))) ∧ (βˆƒX4 ∈ f (Inj0 X3), p X2)) β†’ (βˆ€X4 ∈ X2, atleast4 X4)) β†’ (((βˆ€X3 βŠ† X2, (βˆƒX4 : set, ((X4 βŠ† X3) ∧ (Β¬ atleast6 (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))) β†’ (βˆƒX4 ∈ SetAdjoin (f X2) βˆ…, (((Β¬ atleast2 (f (⋃ X3))) β†’ (Β¬ p X3)) ∧ (((Β¬ p X3) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ ((TransSet βˆ… β†’ SNoLe X4 (f X3)) ∧ ((Β¬ p X3) β†’ (Β¬ atleast4 X2))))))) β†’ (βˆƒX3 : set, ((X3 βŠ† X2) ∧ (βˆƒX4 : set, atleast6 X3)))) ∧ (βˆ€X3 : set, (Β¬ ordinal βˆ…) β†’ (βˆ€X4 : set, (Β¬ exactly3 (f βˆ…)))))) ∧ p (f (Inj0 (f (f (f (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMaZmszyn66iEaEB4toUDe9E3L2sSmqMd2R)
(βˆ€X2 : set, (Β¬ setsum_p X2) β†’ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) β†’ (βˆƒX2 : set, ((βˆƒX3 : set, ((Β¬ nat_p (f X2)) ∧ (βˆƒX4 : set, (Β¬ p X4)))) ∧ (βˆ€X3 : set, (((βˆƒX4 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…, ((((Β¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ atleast3 (Inj1 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ (((Β¬ p X3) β†’ (Β¬ p (⋃ X4))) ∧ (((p X3 ∧ ((((((Β¬ p X4) β†’ (Β¬ SNo (SetAdjoin X4 X4))) ∧ (Β¬ atleast4 X4)) ∧ (Β¬ p X4)) β†’ p X3) ∧ ((p X2 β†’ p X3) ∧ (Β¬ p (f (f (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))))))) ∧ (setsum_p X4 ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ (p X4 β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))) ∧ (((Β¬ p X3) ∧ ((setsum_p X3 ∧ (Β¬ PNoLt_ X4 (Ξ»X5 : set β‡’ ((p (UPair X5 X4) ∧ (Β¬ p X4)) ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) (Ξ»X5 : set β‡’ (Β¬ p X4)))) ∧ ordinal X4)) ∧ (p (f X4) β†’ (((Β¬ exactly3 βˆ…) β†’ nat_p X3) ∧ exactly4 (f X3))))) β†’ exactly3 X3) β†’ (βˆ€X4 βŠ† X3, TransSet X3) β†’ (βˆ€X4 βŠ† f (f X2), p X2)) ∧ (βˆ€X4 βŠ† f βˆ…, ((Β¬ TransSet X2) ∧ (((Β¬ nat_p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ nat_p X2) ∧ TransSet X4)))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMR4V4zxWLyk9hr24obt2fZA1ZLXxYDQzPc)
βˆ€X2 : set, (Β¬ exactly5 (f X2)) β†’ (βˆƒX3 : set, ((βˆƒX4 : set, ((X4 βŠ† X3) ∧ ((((nat_p X4 ∧ (((nat_p X4 ∧ ((((((Β¬ p X2) β†’ exactly4 (lam2 (f X3) (Ξ»X5 : set β‡’ X4) (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ X6))) β†’ (((((((((Β¬ atleast5 X2) β†’ (Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((exactly3 X5 β†’ ((Β¬ p X6) ∧ p X5)) β†’ (Β¬ p X4) β†’ (Β¬ nat_p X2)) β†’ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (exactly5 X8 ∧ (Β¬ p (f (lam X7 (Ξ»X9 : set β‡’ βˆ…))))))))) β†’ (Β¬ nat_p X3)) ∧ ordinal X3) ∧ ((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (p X4 β†’ p X3 β†’ p X3)) ∧ ((Β¬ p X4) β†’ (Β¬ p βˆ…) β†’ (Β¬ (X3 ∈ X3)) β†’ (atleast6 X4 ∧ p (f X3)) β†’ p X4))) ∧ p (f X4)) ∧ p X2) β†’ (Β¬ p X4)) ∧ (Β¬ atleast6 X4)) β†’ atleast2 (f (f X4))) β†’ p βˆ…) β†’ SNo X4) ∧ ((Β¬ inj X4 X4 (Ξ»X5 : set β‡’ X3)) β†’ ((((p X3 β†’ (Β¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ nat_p (f X4))) β†’ (((Β¬ atleast5 X3) β†’ p βˆ…) ∧ ((p (mul_nat (f X3) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ((Β¬ exactly2 X2) β†’ (Β¬ atleast3 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) β†’ exactly2 X3) β†’ (Β¬ TransSet X2)))) β†’ ((Β¬ atleast5 X4) ∧ (linear_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (p βˆ… ∧ (p X5 ∧ (p βˆ… ∧ (Β¬ p βˆ…))))) ∧ p X4))) ∧ (Β¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))))) β†’ ((Β¬ p X4) ∧ p X3)) β†’ (atleast6 βˆ… ∧ (p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))))) ∧ p X4) ∧ (Β¬ p X4)) ∧ ((((((p X2 β†’ atleast6 X2) ∧ (Β¬ exactly4 (f X3))) β†’ ((p X3 β†’ (Β¬ p X3)) ∧ (p (SNoLev X4) ∧ ((((Β¬ exactly4 X4) β†’ ((atleast2 X4 ∧ (Β¬ p X3)) ∧ (Β¬ p (f X3)))) ∧ equip X2 X4) ∧ (exactly3 βˆ… β†’ p (f βˆ…)))))) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ (Β¬ atleast6 (In_rec_i (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ set β‡’ βˆ…) (f X4)))) ∧ ((Β¬ exactly3 X4) ∧ p X2))))) ∧ (Β¬ SNo (f X2))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMVX3aLbsURiES9rip6Kpcy3wMgYJpzL6n5)
p (f (f (f (f (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))))) β†’ ((βˆ€X2 ∈ binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…), (((Β¬ exactly3 (f X2)) ∧ (βˆ€X3 : set, p X2)) ∧ (βˆƒX3 : set, ((βˆƒX4 : set, ((set_of_pairs X3 β†’ (Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ p X3)) ∧ (βˆ€X4 : set, atleast6 X3 β†’ (Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))))) ∧ (βˆƒX2 : set, (((βˆ€X3 βŠ† f X2, βˆƒX4 : set, ((X4 βŠ† X3) ∧ (Β¬ p (V_ (setminus (f (ordsucc X3)) (f (f X4))))))) β†’ (βˆ€X3 : set, (βˆ€X4 : set, (((Β¬ p X4) ∧ (Β¬ atleast4 X2)) ∧ (Β¬ ordinal X3)) β†’ exactly2 X3) β†’ (Β¬ atleast5 βˆ…))) ∧ ((βˆƒX3 : set, (Β¬ p X3)) β†’ exactly2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMPrvfQbYpDnCoA5i3J3zHJrznWZh1mCkfL)
βˆ€X2 ∈ binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…, βˆ€X3 : set, nat_p X3 β†’ (Β¬ reflexive_i (Ξ»X4 : set β‡’ Ξ»X5 : set β‡’ ((Β¬ PNo_downc (Ξ»X6 : set β‡’ Ξ»X7 : set β†’ prop β‡’ nat_p X3) (f X3) (Ξ»X6 : set β‡’ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ ((exactly3 X6 β†’ (((((((((Β¬ p X2) ∧ (p X6 β†’ (Β¬ atleast2 X3))) ∧ ((((Β¬ p βˆ…) β†’ exactly4 X2) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ (((p X5 β†’ (((((((p X4 ∧ (p X5 ∧ ((Β¬ p X4) β†’ per_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ p X2))))) ∧ (Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ p (⋃ (f X6))) β†’ atleast6 X6) β†’ p X3) β†’ ((Β¬ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ… ∈ X2)) ∧ (p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) β†’ atleast6 X6)) β†’ (((Β¬ p X5) ∧ (p X3 ∧ (p X5 β†’ p X6))) ∧ ((Β¬ p X5) β†’ atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ p βˆ… β†’ (((Β¬ exactly5 X6) ∧ (atleast5 (Unj X5) ∧ (p X5 β†’ (Β¬ trichotomous_or_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ atleast2 (f X8))) β†’ nat_p X5))) ∧ ((atleast4 X5 β†’ (Β¬ exactly4 X6) β†’ (((p X2 ∧ TransSet X5) ∧ p βˆ…) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) β†’ (((Β¬ p X5) ∧ (Β¬ p βˆ…)) ∧ (Β¬ TransSet X5))))))) β†’ (Β¬ p X5))) β†’ ((Β¬ exactly3 X2) β†’ (Β¬ exactly3 X6)) β†’ atleastp (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) X6) ∧ (((TransSet (f (f X6)) β†’ ((Β¬ atleast3 X3) ∧ (Β¬ exactly5 βˆ…))) β†’ p X5) β†’ (Β¬ (X6 βŠ† 𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) β†’ ((((p X6 ∧ (p X4 β†’ p X2)) ∧ (Β¬ (βˆ… ∈ βˆ…))) β†’ (exactly2 (f X6) ∧ (((Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p βˆ…)) β†’ exactly5 X5 β†’ (Β¬ TransSet X5) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) β†’ p X5) ∧ ((p X6 ∧ ((Β¬ p X5) ∧ (Β¬ p βˆ…))) ∧ (p βˆ… ∧ p X5)))) ∧ ((p βˆ… β†’ (Β¬ p X3)) ∧ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ p (binunion (f X8) X8) β†’ (atleast6 X7 β†’ ((Β¬ exactly4 X8) ∧ p X6)) β†’ ((Β¬ p X7) ∧ set_of_pairs βˆ…)))) ∧ (exactly4 X5 β†’ p X3 β†’ (strictpartialorder_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ atleast4 X7)) ∧ (Β¬ (X3 ∈ X4))))))) β†’ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ ((Β¬ exactly4 X5) β†’ (Β¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))))) β†’ (Β¬ atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ p (f X5))) ∧ p X6) ∧ ((((((((((Β¬ atleast3 X4) β†’ ((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ SNo_ (Inj0 X6) X6)) β†’ (Β¬ SNo X5)) ∧ ((ordinal X5 ∧ p X6) ∧ (p (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ ((((Β¬ nat_p X6) β†’ p X5) ∧ (((p X5 β†’ (Β¬ SNoLe X6 X5)) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ (exactly3 X5 β†’ p X2)))))) β†’ ((SNoLe X4 X6 β†’ p X3) ∧ (Β¬ p X6))) β†’ SNo X5) ∧ exactly5 X5) β†’ (Β¬ p X6) β†’ (f X6 ∈ 𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ p X6)) ∧ (Β¬ p (f X4))) ∧ ((((Β¬ p X6) β†’ ((Β¬ p X5) ∧ ((binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ… = X6) β†’ (Β¬ atleast3 X6) β†’ tuple_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) X6)) β†’ atleast4 X6 β†’ ordinal X6) ∧ ((atleast5 X5 β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ ((p βˆ… ∧ exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ p X3) β†’ ((p X3 ∧ p (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ p (proj1 X3)))))) β†’ ((Β¬ p X6) ∧ ((exactly4 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) ∧ p X6) ∧ PNoLe X6 (Ξ»X7 : set β‡’ ((p (f X7) ∧ p X7) ∧ ((atleast4 X7 ∧ ((Β¬ p X7) β†’ ((p (proj1 (f (Inj0 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) β†’ TransSet (f (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ ((Β¬ atleast5 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p X6))) ∧ ((((Β¬ p X7) β†’ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ ((Β¬ atleast4 X7) β†’ (p X4 ∧ (Β¬ atleast4 (Sep2 (UPair (f X6) X7) (Ξ»X8 : set β‡’ X3) (Ξ»X8 : set β‡’ Ξ»X9 : set β‡’ (X7 ∈ X9) β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))))) β†’ p βˆ…) β†’ partialorder_i (Ξ»X8 : set β‡’ Ξ»X9 : set β‡’ atleast4 X8)) ∧ ((Β¬ atleast6 X7) ∧ (((((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ PNoLe X7 (Ξ»X8 : set β‡’ (Β¬ exactly3 X8)) X6 (Ξ»X8 : set β‡’ atleast5 βˆ…)) ∧ (Β¬ exactly3 (f X7))) β†’ (Β¬ p X6)) β†’ (Β¬ p (f βˆ…)) β†’ (Β¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))))) β†’ (Β¬ p X2)))) βˆ… (Ξ»X7 : set β‡’ ((p X6 β†’ ((((((Β¬ exactly3 βˆ…) β†’ (Β¬ p X6)) ∧ ((((((Β¬ SNo X6) β†’ ((Β¬ p (f X2)) β†’ p X6) β†’ ((Β¬ atleast6 (f X7)) β†’ (p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ atleast3 (SNoLev βˆ…) β†’ setsum_p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ ((atleast3 (proj1 βˆ…) β†’ p X4) ∧ (Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) β†’ (Β¬ p βˆ…)) β†’ (inj X7 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) (Ξ»X8 : set β‡’ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) ∧ (p X7 β†’ (Β¬ exactly3 βˆ…) β†’ (((Β¬ nat_p X6) ∧ (Β¬ p X7)) ∧ p X6) β†’ (((Β¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ atleast3 βˆ…) β†’ (((Β¬ atleast2 (ordsucc (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ PNoLe (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) (Ξ»X8 : set β‡’ (Β¬ atleast3 X7)) (f X6) (Ξ»X8 : set β‡’ (Β¬ p X7))))) β†’ (Β¬ exactly3 X6)))) ∧ (Β¬ atleast5 X5)) β†’ (Β¬ atleast5 X6)) β†’ ordinal X7)) β†’ (Β¬ p X3)) ∧ ((Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ ((Β¬ (f X7 ∈ X6)) ∧ atleast4 X7))) ∧ (Β¬ p X7))) β†’ (nat_p (f βˆ…) β†’ ordinal X7) β†’ (Β¬ atleast4 X6)) β†’ (((Β¬ atleast6 X7) ∧ ((((Β¬ SNo (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (p (ordsucc X6) β†’ (Β¬ TransSet X5) β†’ (Β¬ atleast2 X6))) β†’ ((Β¬ TransSet (f X7)) ∧ (Β¬ exactly5 (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))))) ∧ p X7)) ∧ (Β¬ exactly4 βˆ…))))))) ∧ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ (p (famunion X6 (Ξ»X7 : set β‡’ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ SNoLe X3 X6)) β†’ (Β¬ p X2)) β†’ (((p X5 β†’ (Β¬ p βˆ…)) β†’ TransSet X3) ∧ ((SNo X6 β†’ (((((((((Β¬ p X5) ∧ (Β¬ p X5)) β†’ (Β¬ p X5)) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ nat_p (Sep2 X6 (Ξ»X7 : set β‡’ binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ atleast3 X5)))) ∧ equip X4 X5) ∧ ((((Β¬ SNoLt X5 X6) ∧ ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ p X6))) ∧ ordinal X5) ∧ (Β¬ p X4))) β†’ (Β¬ SNoLt X5 X5)) ∧ p X5)) ∧ ((Β¬ p X5) ∧ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) β†’ p X3)) ∧ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) β†’ (Β¬ equip X5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (((Β¬ p X2) ∧ ((((((Β¬ strictpartialorder_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (p (Inj0 X4) ∧ ((Β¬ atleast6 X4) β†’ ((Β¬ p X8) ∧ (Β¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))))) β†’ (((Β¬ p (f (f X6))) β†’ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (((p X5 ∧ (Β¬ p X6)) β†’ (Β¬ p βˆ…)) β†’ p βˆ… β†’ ((Β¬ p X5) β†’ (Β¬ ordinal X5) β†’ (Β¬ p X2)) β†’ (Β¬ p (add_nat X5 X5)))) β†’ (Β¬ p X5))) ∧ exactly2 X3))))) ∧ atleast4 (Unj X4))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMLaAketNmGRoYKwURuF5Zgute9715hWJCX)
βˆ€X2 : set, (((βˆƒX3 : set, ((βˆƒX4 ∈ f (f (f (f X3))), (exactly5 (f X3) ∧ p (f X3)) β†’ p X4) ∧ ((Β¬ p (f X2)) β†’ (βˆƒX4 : set, ((X4 βŠ† X2) ∧ ((antisymmetric_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ nat_p X5)) β†’ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ TransSet X3)))))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ (βˆ€X3 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)), βˆ€X4 βŠ† X3, (((Β¬ p (Inj1 (f X2))) ∧ exactly3 (setexp (Inj1 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) X2)) ∧ p X3)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMWLLDvpuWN2oCWVjoR9DN4ayrdXLykgyWr)
βˆ€X2 : set, (((βˆ€X3 βŠ† X2, p X2) ∧ (Β¬ atleastp (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) X2)) β†’ (Β¬ p X2)) β†’ PNoLt X2 (Ξ»X3 : set β‡’ βˆ€X4 βŠ† binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…, (p X3 ∧ (((p X4 β†’ (Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) ∧ (((Β¬ exactly5 X2) ∧ atleast3 (lam2 (f X3) (Ξ»X5 : set β‡’ X4) (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ X4))) β†’ p X3)) ∧ (Β¬ exactly5 X4)))) X2 (Ξ»X3 : set β‡’ βˆ€X4 βŠ† X3, (((Β¬ p X3) ∧ ((Β¬ equip X2 (f X2)) ∧ ((Β¬ ordinal X4) β†’ exactly5 X2))) ∧ p (f X3)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMWTB6hz7fpvZeU9nnH6ccjUEmLokkpHp8N)
βˆƒX2 ∈ famunion (SetAdjoin (binintersect (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) (Inj1 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) βˆ…) (Ξ»X3 : set β‡’ X3), βˆƒX3 : set, ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMJY61Xne5gMsT2R6SoGE1dZ1G381nR7ybe)
((βˆ€X2 : set, (βˆ€X3 ∈ X2, ordinal (Inj1 X2)) β†’ (βˆƒX3 : set, ((Β¬ atleast5 (Inj1 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) ∧ (βˆƒX4 : set, ((Β¬ exactly5 X3) ∧ totalorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((Β¬ nat_p X4) β†’ (Β¬ p X5)) β†’ exactly3 X5)))))) β†’ ((βˆ€X2 : set, βˆƒX3 : set, (((p (f X3) β†’ (βˆ€X4 βŠ† X3, (Β¬ ordinal X2) β†’ (Β¬ atleast2 X3))) β†’ ((Β¬ exactly5 (f (f X3))) β†’ (βˆƒX4 : set, p X3)) β†’ p X2) ∧ ((βˆ€X4 : set, (Β¬ TransSet (Inj1 X3)) β†’ p X3) β†’ (βˆƒX4 : set, (((Β¬ exactly3 X4) β†’ (p (f βˆ…) ∧ (Β¬ p βˆ…))) ∧ (p (f X2) ∧ (((Β¬ p (binrep (UPair (f βˆ…) (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) (⋃ X4))) ∧ (Β¬ atleast6 (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) ∧ exactly2 X2))))))) ∧ (βˆƒX2 : set, βˆ€X3 : set, (Β¬ atleast5 X3) β†’ (((βˆƒX4 : set, ((Β¬ atleast3 X3) ∧ (Β¬ p X4))) ∧ (βˆƒX4 ∈ Inj0 (f (f X3)), p X2)) ∧ (Β¬ atleast2 X2))))) β†’ exactly2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMFrw98Z9CKJ33Bmkpg3GVQiCs3CuAQnyyx)
(atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) ∧ (βˆ€X2 : set, βˆ€X3 βŠ† X2, βˆ€X4 ∈ X3, ((((Β¬ set_of_pairs X2) ∧ ((Β¬ exactly2 X4) β†’ (Β¬ p X3))) ∧ (Β¬ p X3)) ∧ (((Β¬ p X4) ∧ p X4) ∧ (Β¬ (βˆ… ∈ βˆ…)))) β†’ exactly5 X3))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMVD8ZHapwQ4grnEca8ak4dzaBe3FaQvdsq)
((βˆƒX2 ∈ f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…), βˆƒX3 : set, ((Β¬ p (f (f (𝒫 (f X3))))) ∧ (βˆƒX4 : set, (p X4 β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (TransSet X3 ∧ (((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ exactly5 X3)) ∧ exactly4 X4))))) β†’ atleast6 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ (βˆ€X2 : set, (βˆƒX3 : set, βˆ€X4 : set, (Β¬ atleast3 X3) β†’ (Β¬ p X3)) β†’ exactly4 X2)
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMTUFamLkk9shVFirwRp3rmxtApAA81krcp)
(βˆƒX2 : set, ((X2 βŠ† Sing (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (βˆ€X3 : set, exactly3 X2 β†’ ((βˆƒX4 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…), (((((p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) β†’ p (f X4)) β†’ (((((((Β¬ p X4) β†’ ((((Β¬ SNo (f X2)) β†’ ((set_of_pairs X4 ∧ ((p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) ∧ (Β¬ p (f X4))) ∧ (p X4 ∧ (((p (f βˆ…) ∧ ((((βˆ… = X3) β†’ ((exactly4 X3 β†’ (Β¬ exactly2 X3)) ∧ (atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ (Β¬ p X4)))) ∧ ((((p X3 ∧ atleast6 X4) ∧ (((exactly5 βˆ… ∧ ((Β¬ p X3) β†’ (Β¬ exactly3 X3) β†’ (Β¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) ∧ ((((atleast5 X4 ∧ (((((Β¬ ordinal βˆ…) ∧ p X2) ∧ (p (⋃ X3) β†’ ((Β¬ exactly5 (f (f X3))) ∧ ((binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ… ∈ X2) ∧ (Β¬ p X3))) β†’ (p βˆ… ∧ p X3))) β†’ (((exactly4 X2 ∧ p X3) ∧ p (f X3)) ∧ p X3)) β†’ p X3)) β†’ ((((X3 ∈ X3) ∧ (atleast2 X3 ∧ p X4)) ∧ (Β¬ p X4)) ∧ ((p X4 β†’ (p (f X3) ∧ (Β¬ p X3)) β†’ (((Β¬ p (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((Β¬ p (f X4)) ∧ (Β¬ p X2))) ∧ (Β¬ p βˆ…))) ∧ ((Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ p βˆ…))))) ∧ (Β¬ p X2)) β†’ p X2)) β†’ (Β¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) β†’ (set_of_pairs βˆ… β†’ ((((Β¬ atleast5 X4) ∧ ((X4 = binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ (Β¬ p X2))) ∧ ((X3 ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) β†’ ((Β¬ p (f X4)) ∧ p (Sing (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))))) ∧ ((p X4 β†’ (p X4 ∧ (Β¬ p βˆ…))) β†’ (Β¬ p (setminus X4 X3))))) β†’ (Β¬ atleast5 X4)) β†’ atleast6 βˆ… β†’ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ (Β¬ p X3))) ∧ (exactly5 X3 β†’ (Β¬ exactly2 (f X3)) β†’ ((Β¬ atleast5 X3) ∧ (Β¬ ordinal X3)))) ∧ (((p X3 ∧ (((p X4 ∧ (Β¬ atleast3 X3)) ∧ ((Β¬ tuple_p X4 X4) ∧ (nat_p X4 β†’ (p X4 ∧ (Β¬ exactly4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))) β†’ (Β¬ atleast4 X3))) ∧ (ordinal X2 β†’ (Β¬ p X3))) β†’ ((Β¬ exactly5 βˆ…) β†’ atleast4 X4) β†’ p (combine_funcs (f (f X4)) X4 (Ξ»X5 : set β‡’ X3) (Ξ»X5 : set β‡’ SetAdjoin X3 X5) (add_nat (binrep (Unj (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) X4)) β†’ ((((Β¬ p X4) ∧ (reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ atleast2 X2)) ∧ (Β¬ exactly3 (f X4)))) β†’ p X4) ∧ ((((p X3 β†’ (Β¬ p X3)) β†’ (((((exactly3 X3 ∧ ((p X4 β†’ SNo X3) β†’ (X2 ∈ f X2))) β†’ ((set_of_pairs X3 ∧ (Β¬ atleast3 X4)) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) β†’ exactly4 X4) ∧ (((Β¬ nat_p βˆ…) ∧ p X4) ∧ (((exactly2 X2 β†’ p X3) ∧ ((Β¬ atleast6 X4) β†’ (((((((Β¬ atleast5 X3) ∧ (exactly3 βˆ… ∧ ordinal (proj1 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ exactly3 X3)) ∧ p (f X4)) ∧ ((p X3 ∧ ((p (f X4) ∧ (p X3 ∧ ((Β¬ p βˆ…) β†’ p X3))) β†’ exactly3 X2)) ∧ (Β¬ atleast6 X4))) β†’ (Β¬ ordinal X3) β†’ nat_p X3 β†’ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p X4)))) ∧ ((Β¬ p X3) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) β†’ (atleast2 (f X3) ∧ (((atleast3 X4 β†’ (Β¬ TransSet X3)) β†’ ((exactly5 (f X4) β†’ (Β¬ p X3)) β†’ (Β¬ p X3)) β†’ (Β¬ p X3)) β†’ atleast2 βˆ…)))))) ∧ exactly5 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ exactly2 βˆ…) ∧ p X2))))))) ∧ p (f βˆ…))) β†’ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (((((((Β¬ p (f X4)) β†’ atleast2 X3 β†’ p X4 β†’ setsum_p X3) ∧ ((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) ∧ ((p X4 β†’ (Β¬ p X4)) ∧ (Β¬ p X3))) β†’ p X4 β†’ (set_of_pairs X4 ∧ p X3)) β†’ ((Β¬ p (f (Unj (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))) ∧ ((Β¬ p X3) ∧ (((exactly2 X4 ∧ (Β¬ p (f X2))) ∧ ((Β¬ p (f X4)) β†’ ((((Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ TransSet X6))) β†’ (Β¬ nat_p X3)) ∧ (((p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ (Β¬ set_of_pairs (Inj1 X2))) ∧ ordinal X3) ∧ binop_on X2 (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ X5))) ∧ (((Β¬ setsum_p X3) ∧ (Β¬ atleast4 X3)) β†’ (Β¬ p X3))))) ∧ ((p X3 ∧ (Β¬ p (f X4))) β†’ ((p X2 ∧ (Β¬ tuple_p X4 X4)) ∧ ((Β¬ p (f X2)) β†’ (Β¬ p X3) β†’ (Β¬ p X4))))))) β†’ (Β¬ p X2))) β†’ eqreln_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ p X6 β†’ atleast2 X6 β†’ (Β¬ p X6))) β†’ (p X3 ∧ ((Β¬ exactly2 (V_ X3)) ∧ (Β¬ atleast5 (⋃ (f βˆ…)))))) ∧ TransSet X3) β†’ transitive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (atleastp X2 βˆ… β†’ ((Β¬ atleast2 X6) ∧ p X5)) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ p X3)))) ∧ (Β¬ p X4)) ∧ (((((Β¬ TransSet (f X4)) ∧ ((Β¬ atleast4 X2) β†’ (((atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) β†’ p X3) β†’ (((exactly4 (f X3) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ p X4) ∧ p X3)) ∧ setsum_p X4) β†’ (Β¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ (p (f (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ p X4) ∧ (Β¬ p X4)))) β†’ p X4 β†’ (((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ (Β¬ p X3)) ∧ (Β¬ p X3))) ∧ p X4)) ∧ setsum_p X4) ∧ (Β¬ p X3)) β†’ ((((p X3 β†’ (atleast5 X2 ∧ ((Β¬ TransSet X3) β†’ exactly5 X4))) ∧ (Β¬ SNo X2)) ∧ (Β¬ exactly5 (⋃ X3))) ∧ p X4)) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ p X2 β†’ ((Β¬ p X3) ∧ ((((atleast5 X3 β†’ (((Β¬ p X3) β†’ (Β¬ exactly2 X3)) ∧ (p (proj1 X4) β†’ (Β¬ exactly3 X4)))) ∧ p X2) ∧ (Β¬ atleast5 βˆ…)) ∧ ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ ordinal (f βˆ…)) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))))))) β†’ (p βˆ… ∧ (p X3 ∧ TransSet βˆ…))) ∧ ((Β¬ nat_p X4) β†’ (Β¬ p βˆ…)))) β†’ (βˆƒX4 : set, ((X4 βŠ† binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ (Β¬ atleast2 (f X2))))) β†’ (βˆ€X4 βŠ† βˆ…, (Β¬ p X3))))) β†’ ordinal (Inj0 βˆ…)
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMUi6PEigN1f7kSQiHvZw7SoL8Qnt9Szn6o)
βˆ€X2 βŠ† Sing (SNoLev (f (⋃ (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))), (βˆ€X3 ∈ X2, βˆ€X4 : set, ((Β¬ atleast3 (f (f (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))))) β†’ (nat_p X3 ∧ (Β¬ (X3 = binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))) β†’ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ ((((((((Β¬ p X4) β†’ p X3) ∧ atleast3 (f X2)) β†’ atleast2 X3) β†’ ((Β¬ setsum_p X3) ∧ ((Β¬ p X3) β†’ p (proj1 X3)))) β†’ (Β¬ atleast4 X3) β†’ atleast2 X3) β†’ ((((Β¬ exactly4 X2) ∧ (Β¬ antisymmetric_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (((((SNo X5 β†’ atleast2 X6) ∧ (Β¬ p (f X5))) β†’ ((Β¬ p X5) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ (((((((Β¬ exactly4 (Inj1 X6)) β†’ (Β¬ p X4)) ∧ ((Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ p X4)) β†’ (Β¬ p (nat_primrec X6 (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ X8) X6)) β†’ (Β¬ p X6)) ∧ (((Β¬ ordinal X4) β†’ (exactly3 X6 β†’ (Β¬ p X5)) β†’ (p X6 ∧ ((((Β¬ exactly2 X4) ∧ ((Β¬ p X5) β†’ p X6)) ∧ p (setsum βˆ… X6)) ∧ (Β¬ nat_p X2)))) β†’ (p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ ((((Β¬ p X3) ∧ (p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) β†’ (p X4 ∧ (Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))))) ∧ (p X6 β†’ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ ((((Β¬ atleast2 X5) β†’ ((((Β¬ p X6) β†’ exactly4 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ ((((((Β¬ exactly4 X6) β†’ p X6) ∧ (Β¬ p X3)) β†’ SNo X4) β†’ atleast4 X6) β†’ (Β¬ nat_p X6))) ∧ ((Β¬ exactly2 X2) β†’ set_of_pairs βˆ… β†’ ((p βˆ… ∧ (Β¬ atleast6 X5)) ∧ ((Β¬ p X6) ∧ (Β¬ set_of_pairs X6)))))) β†’ atleast3 X6) ∧ (atleast3 X5 ∧ ((Β¬ setsum_p X6) β†’ (Β¬ TransSet X6))))) β†’ atleast2 X3) β†’ p X6)) ∧ ((p X3 ∧ (((Β¬ exactly3 X5) β†’ ((p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ ((Β¬ p X5) ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ p X6))) ∧ ((((Β¬ atleast4 X5) ∧ ((atleast5 X5 ∧ (((Β¬ p X6) β†’ (Β¬ nat_p X6) β†’ p (If_i ((p X5 ∧ ((Β¬ p X2) β†’ (((p X6 ∧ (Β¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) β†’ p X6) β†’ (Β¬ SNo (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ (Β¬ atleast2 (f βˆ…))) β†’ (atleastp (f X6) X5 ∧ (Β¬ p X6)))) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) βˆ… X5)) β†’ (Β¬ p X6) β†’ p X2)) β†’ (atleast6 X5 ∧ p (f (Pi X5 (Ξ»X7 : set β‡’ binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))))) ∧ (Β¬ (SNoLev X2 = X6))) β†’ p (Inj0 X5)))) ∧ ((Β¬ p X5) β†’ (Β¬ p X5)))) β†’ (Β¬ (X5 ∈ UPair βˆ… (Inj1 X5))))) ∧ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ p βˆ…))))) ∧ p X2) ∧ (p (f X3) β†’ (Β¬ p X3)))) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) β†’ ((βˆƒX3 : set, ((βˆƒX4 ∈ f (f X2), (Β¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) ∧ ((((βˆ€X4 : set, (p X3 ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ exactly5 X4) β†’ (p (f (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ (p X4 β†’ atleast4 βˆ…))) β†’ (βˆƒX4 : set, (atleast2 βˆ… ∧ SNoLt (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) X4)) β†’ (Β¬ p X2)) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) β†’ (βˆ€X4 βŠ† f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…), (Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p X2) β†’ (Β¬ atleast6 X5))))) ∧ (βˆƒX4 : set, ((Β¬ equip βˆ… X3) ∧ (Β¬ exactly2 (f X4))))))) β†’ (βˆƒX3 : set, ((βˆƒX4 ∈ X3, (nat_p βˆ… ∧ ((Β¬ exactly2 X4) ∧ (((((p X4 β†’ p X4) β†’ (((p X4 β†’ (Β¬ ordinal X4) β†’ p X3) ∧ (((Β¬ atleast5 X3) ∧ ((((p X3 β†’ (((((Β¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (Β¬ p (SNoLev X2))) β†’ ((Β¬ p X4) ∧ (p X4 β†’ (((Β¬ p X2) ∧ (Β¬ p βˆ…)) ∧ (Β¬ atleast4 (Sing X4)))))) ∧ p X3) ∧ ((p βˆ… β†’ (Β¬ ordinal X4)) β†’ (Β¬ tuple_p X2 X3)))) ∧ ((Β¬ p X3) ∧ p X3)) β†’ p (f X3)) ∧ (Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ p X4)) ∧ (Β¬ nat_p X2)) β†’ (Β¬ (X2 βŠ† X3))) ∧ ((((Β¬ SNo_ βˆ… (f (f X3))) ∧ (X3 βŠ† X3)) ∧ (((Β¬ TransSet βˆ…) β†’ p βˆ…) β†’ p βˆ…)) β†’ TransSet X2)) ∧ (Β¬ ordinal X3)) ∧ (Β¬ setsum_p X4))))) ∧ (βˆƒX4 : set, ((X4 βŠ† X2) ∧ (ordinal X2 ∧ p X4)))))) β†’ (βˆ€X3 : set, βˆ€X4 βŠ† X3, ((p X4 β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMPCiuyy6Tv8QvQxbcPbj2DcuYQjjRRhatc)
βˆƒX2 : set, ((X2 βŠ† f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (((βˆƒX3 : set, (((βˆƒX4 ∈ f (f (f βˆ…)), p X3) β†’ (Β¬ p X3)) ∧ ((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ (Β¬ p (f X2))))) β†’ (Β¬ exactly2 (ordsucc (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))))) ∧ (βˆ€X3 : set, (βˆƒX4 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…), ((p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (Β¬ p X4)) ∧ (atleast6 X4 β†’ nat_p (f βˆ…))) β†’ (Β¬ p X4)) β†’ p X2)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMP7zpTxFP9DDvFw3a4Nh61KhRi99NyBCdH)
βˆƒX2 : set, βˆ€X3 ∈ f (f X2), ((βˆƒX4 ∈ In_rec_i (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ set β‡’ X3) (f X3), p X4) β†’ (βˆ€X4 ∈ X3, (Β¬ p X4))) β†’ (βˆƒX4 ∈ binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) X2, (((((((exactly2 X3 ∧ (Β¬ atleast4 (f X4))) β†’ exactly3 X4) β†’ ((Β¬ p X2) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) β†’ (exactly5 X2 ∧ ((Β¬ (X2 βŠ† X4)) β†’ p X3))) ∧ (((((Β¬ p X4) ∧ (ordinal (f X2) β†’ ((p X3 β†’ exactly3 βˆ…) ∧ p X3))) β†’ (((((Β¬ atleast2 X2) ∧ exactly5 X3) β†’ (Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) ∈ ordsucc (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) ∧ p (f βˆ…))) ∧ ((Β¬ atleast3 (f X4)) β†’ setsum_p X4 β†’ (Β¬ exactly2 X4))) β†’ nat_p X2)) ∧ ((p X3 ∧ (Β¬ exactly4 X2)) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ ((Β¬ p X2) ∧ exactly4 X3)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMaTZuCoTx1hfdPahzXbWdvfDKa4LcwuhHF)
βˆƒX2 ∈ f (f (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))), ((Β¬ p X2) ∧ (βˆ€X3 ∈ X2, βˆ€X4 βŠ† X2, (p X3 β†’ ((Β¬ p X3) ∧ p X2) β†’ (exactly5 X4 β†’ (Β¬ ordinal (f X4)) β†’ exactly3 (f X4)) β†’ (Β¬ exactly5 X3) β†’ (Β¬ set_of_pairs βˆ…)) β†’ exactly2 X2))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMZXRW7zibDFmC6NZuJKGwJxkcAGMAKd3ER)
(exactly3 (f βˆ…) ∧ (βˆƒX2 : set, βˆ€X3 : set, (βˆƒX4 : set, (((p X3 β†’ atleast3 X4 β†’ (Β¬ p X4)) β†’ exactly5 X3 β†’ ((((p (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ p X3) β†’ p βˆ…) β†’ p X4) ∧ ((p X2 ∧ nat_p βˆ…) ∧ (exactly2 (SNoElts_ (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ p X3)))) ∧ (ordinal βˆ… β†’ atleast4 X3))) β†’ ((TransSet (f (Inj0 βˆ…)) ∧ exactly5 X2) ∧ ((βˆ€X4 : set, ((Β¬ ordinal βˆ…) ∧ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ ((Β¬ atleast5 X3) ∧ ((p X3 ∧ p X3) ∧ (Β¬ (X3 = X2))))) β†’ (Β¬ (X3 = X4))))) β†’ (βˆ€X4 ∈ f X2, p X4) β†’ atleast3 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) β†’ (βˆ€X4 ∈ f X3, ((PNo_upc (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ prop β‡’ (((X6 X3 ∧ p (f βˆ…)) ∧ atleast2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ ((p X5 ∧ X6 X5) β†’ nat_p X4))) X3 (Ξ»X5 : set β‡’ p X3) β†’ (Β¬ p X3) β†’ p X3 β†’ p (f X2) β†’ (Β¬ p βˆ…)) ∧ exactly3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMFsvdcRLDCSVfJPfGxxAKDnme8ppV7NWB4)
βˆƒX2 ∈ f (Inj0 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))), βˆ€X3 ∈ f X2, ((Β¬ p X3) ∧ (βˆ€X4 : set, p (UPair βˆ… X4) β†’ (X4 ∈ βˆ…) β†’ (Β¬ exactly3 X2)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMW6eLRc5zbuwV3GcNosifHXyMRAtZqP9RT)
βˆƒX2 : set, ((βˆƒX3 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…), βˆƒX4 : set, (((p βˆ… ∧ (Β¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ ((Β¬ (X3 ∈ X4)) ∧ (((((setsum_p X3 ∧ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ atleast6 (f (f X3))) β†’ (equip X3 (f X2) ∧ (Β¬ PNoEq_ X2 (Ξ»X5 : set β‡’ ((p (f X5) ∧ ((((Β¬ atleast2 X3) ∧ ((((atleast5 X3 ∧ p X4) β†’ (Β¬ p X5)) ∧ exactly2 X3) β†’ (Β¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) ∧ (((Β¬ exactly4 X5) β†’ atleast2 X5) ∧ ((Β¬ ordinal (Inj0 X5)) ∧ atleast3 βˆ…))) ∧ (p X3 β†’ ((((Β¬ tuple_p X5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (((Β¬ atleast4 (V_ (f X5))) β†’ (Β¬ nat_p βˆ…)) β†’ (Β¬ exactly4 X4)) β†’ (Β¬ p X3)) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (((((p X4 ∧ p X3) ∧ p (Sep X4 (Ξ»X6 : set β‡’ ((Β¬ TransSet X5) ∧ p X6)))) β†’ (((((((Β¬ p (UPair X4 X4)) β†’ (Β¬ p βˆ…)) ∧ p X4) β†’ (Β¬ SNo_ X4 βˆ…) β†’ (Β¬ p X5) β†’ (Β¬ p X3) β†’ (p X4 ∧ ((((((Β¬ exactly4 X5) β†’ p X4 β†’ (Β¬ p X5)) β†’ (Β¬ p X4)) ∧ ((Β¬ p βˆ…) ∧ ((((((((atleast5 X4 ∧ p X5) ∧ (((Β¬ exactly2 X5) ∧ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ (((Β¬ p X5) ∧ (Β¬ p X5)) ∧ exactly5 X4)) ∧ (exactly2 βˆ… ∧ exactly5 X5))) ∧ (((((((Β¬ ordinal βˆ…) β†’ (((((p X4 β†’ ((exactly2 X4 ∧ (p X5 ∧ ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ p (setsum (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) X5))))) β†’ (Β¬ p X4)) β†’ atleast4 (⋃ X4)) β†’ atleast5 X5) β†’ (Β¬ p (f βˆ…))) β†’ set_of_pairs X5 β†’ atleast3 (f βˆ…)) ∧ atleast6 X5)) ∧ ((Β¬ p X4) ∧ (SNo (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) ∧ (((Β¬ p X3) β†’ ((exactly4 (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ ((p X4 ∧ ((Β¬ ordinal βˆ…) β†’ ((Β¬ p X4) ∧ (Β¬ p X5)) β†’ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ (Β¬ TransSet X3))) ∧ p X3)) ∧ ((Β¬ p X5) ∧ ((Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (p X5 ∧ p X5))))))) β†’ (Β¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ p X4) β†’ ((p X3 ∧ TransSet X5) ∧ ((Β¬ nat_p X5) ∧ (atleast4 X5 ∧ (Β¬ p X5))))) ∧ p X2) ∧ ((((p X5 β†’ (Β¬ eqreln_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ p X6 β†’ p (setsum X7 X7))) β†’ (Β¬ nat_p X4)) ∧ p X4) β†’ (p X4 β†’ ((Β¬ reflexive_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (Β¬ atleast2 X5))) ∧ ((exactly4 X5 β†’ (Β¬ p X3) β†’ atleast6 X3) ∧ p X4))) β†’ (Β¬ PNoLt_ (f (f X5)) (Ξ»X6 : set β‡’ ((TransSet X5 β†’ (Β¬ p βˆ…)) ∧ (SNo X6 ∧ (Β¬ ordinal X5)))) (Ξ»X6 : set β‡’ (Β¬ exactly3 X4))) β†’ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ p X5)))) β†’ ((p X4 β†’ p X4) ∧ (((((Β¬ p (f X5)) ∧ (Β¬ atleast2 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ nat_p (f X5)) β†’ (Β¬ p X3)) ∧ ((((p X3 ∧ (Β¬ atleast5 X5)) β†’ (((Β¬ p X5) ∧ (Β¬ exactly1of3 (p X4) (Β¬ ordinal X4) (p (Sing (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ (Β¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))) ∧ (((Β¬ strictpartialorder_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ p X3) ∧ (((((Β¬ nat_p X5) ∧ ((p X4 ∧ (strictpartialorder_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ p X7) β†’ ((((Β¬ (X2 ∈ f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ (((Β¬ exactly2 X5) ∧ (((Β¬ p X3) ∧ (((((Β¬ (X4 ∈ X4)) ∧ (ordinal X5 β†’ (((Β¬ exactly5 βˆ…) β†’ exactly3 X5) ∧ atleast6 X5))) β†’ p X3 β†’ atleast4 X5) β†’ ((((Β¬ p X3) β†’ (Β¬ p βˆ…) β†’ (X3 βŠ† f (𝒫 X3))) ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ((Β¬ ordinal X5) ∧ (nat_p X5 β†’ setsum_p X4)))) ∧ (((((((Β¬ p X3) β†’ exactly2 X5) ∧ nat_p βˆ…) ∧ (((Β¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (((Β¬ p X5) ∧ (Β¬ TransSet X3)) ∧ ((Β¬ p βˆ…) β†’ ((((Β¬ exactly2 X4) β†’ nat_p X4 β†’ (Β¬ TransSet X4)) β†’ (Β¬ exactly5 X3)) ∧ ((Β¬ p X5) β†’ (Β¬ exactly2 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))))))) ∧ p X4)) ∧ ((p X5 ∧ (Β¬ p X2)) ∧ (p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ (p (f (f X4)) β†’ ((Β¬ p X5) β†’ (Β¬ atleast4 X5)) β†’ ((Β¬ TransSet X5) ∧ (atleast5 βˆ… β†’ (((Β¬ p X4) β†’ (Β¬ p X4)) ∧ ((((Β¬ exactly4 X2) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ ((Β¬ SNo (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ ((((SNo X5 β†’ (p X4 ∧ (Β¬ p X4))) β†’ (Β¬ reflexive_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ p X6))) β†’ (Β¬ exactly3 X4)) β†’ ((((Β¬ nat_p (Sep X4 (Ξ»X6 : set β‡’ ((Β¬ p X6) ∧ (exactly1of2 (exactly2 X2) (exactly3 X5 β†’ ((((Β¬ atleast2 X5) ∧ ((p X6 ∧ p X5) β†’ p X5)) ∧ (((p X6 β†’ (((Β¬ exactly3 X6) β†’ (Β¬ atleast2 X3) β†’ ((Β¬ stricttotalorder_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ ((p X5 β†’ atleast2 X8) ∧ (((((Β¬ atleast5 (ap X8 X7)) β†’ atleast6 X7) ∧ ((p X8 ∧ ((Β¬ p βˆ…) β†’ (Β¬ SNo X7))) ∧ atleast2 (Sing X7))) ∧ (Β¬ p X7)) β†’ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))) ∧ ((Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ p X5))) β†’ (Β¬ atleast5 X6)) β†’ ordinal X5) β†’ p (f X2)) ∧ ((((((p X5 ∧ (Β¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ atleast4 X4) ∧ ((p (Inj0 (f (f X6))) ∧ (((Β¬ p X5) ∧ ((((Β¬ nat_p βˆ…) ∧ (Β¬ p X2)) β†’ (Β¬ p X5)) ∧ (Β¬ TransSet X5))) ∧ exactly2 X6)) β†’ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ p X5) ∧ (((((Β¬ ordinal X3) β†’ (Β¬ p X6)) β†’ p X5) ∧ ((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ ((atleast5 X4 β†’ ((p X6 β†’ (Β¬ p X5)) ∧ (Β¬ set_of_pairs X5)) β†’ (Β¬ exactly2 (Inj0 X6))) ∧ (Β¬ p X5)))) ∧ (Β¬ SNo X5))) ∧ (Β¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))) ∧ (Β¬ atleast6 X5))) ∧ (Β¬ p X5)))))) ∧ ((p X4 β†’ PNoLt_ X5 (Ξ»X6 : set β‡’ (atleast2 X5 ∧ (atleast6 X3 β†’ (Β¬ p βˆ…)))) (Ξ»X6 : set β‡’ (X5 ∈ X6))) β†’ p X5)) ∧ (SNo X5 ∧ (Β¬ set_of_pairs X4))) ∧ ((Β¬ exactly2 (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ exactly2 (Sing X2) β†’ (((Β¬ p X2) β†’ exactly4 X4) β†’ ((Β¬ setsum_p (setminus (f βˆ…) X4)) ∧ ((Β¬ p X4) β†’ (Β¬ p βˆ…)))) β†’ (Β¬ atleast4 (Sing (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))))) ∧ ((Β¬ TransSet X2) β†’ (atleast4 X4 ∧ (Β¬ setsum_p X4))))))) β†’ (((Β¬ atleast5 X4) ∧ (Β¬ p X4)) ∧ ((Β¬ equip (proj0 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (Β¬ atleast3 X4))))))) ∧ p X3) ∧ (Β¬ atleast4 βˆ…))) β†’ ((p X4 ∧ exactly2 X5) ∧ (p X5 β†’ atleast4 X3)) β†’ (Β¬ atleast6 (f X4))) β†’ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) β†’ p X2)) ∧ (((((p X5 β†’ atleast3 X3) β†’ (Β¬ trichotomous_or_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (((Β¬ exactly2 X6) ∧ (Β¬ p X7)) ∧ ((((atleast4 X4 ∧ (Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) β†’ (Β¬ p βˆ…) β†’ (Β¬ p (f (f X7)))) β†’ (((Β¬ exactly5 X6) ∧ (Β¬ TransSet X6)) ∧ (Β¬ p X7))) β†’ (Β¬ p X7))))) β†’ (p X3 β†’ p (setminus X2 X4)) β†’ ((Β¬ exactly5 X3) ∧ p X4)) ∧ (Β¬ p X3)) β†’ ((p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ (Β¬ p X4)) ∧ atleast4 X5) β†’ ((Β¬ exactly5 X4) ∧ exactly4 X5)) ∧ (nat_p X5 β†’ ((TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) ∧ ((SNo βˆ… ∧ p X3) ∧ ((((Β¬ TransSet (lam2 (f βˆ…) (Ξ»X6 : set β‡’ X6) (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ X6))) ∧ (((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ p X4)) β†’ (Β¬ p X4)) β†’ ((((((((Β¬ atleast4 X4) ∧ ((Β¬ p βˆ…) ∧ exactly2 X5)) β†’ exactly5 X5) ∧ (((Β¬ p X5) β†’ ((p X4 ∧ (atleast3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ ((Β¬ p X5) ∧ ((((Β¬ ordinal X2) ∧ (((p X4 β†’ p X5 β†’ ((p (setsum X4 X3) ∧ ((((((p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ (Β¬ atleast5 X5)) ∧ (((p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ((((exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ ((Β¬ p X4) ∧ p X2)) β†’ (Β¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ exactly3 X4 β†’ p X4) β†’ (((p (Sing X5) β†’ ((((Β¬ p X4) β†’ (Β¬ p X5)) β†’ (Β¬ p (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) ∧ (((Β¬ TransSet X5) ∧ atleast2 X5) ∧ (p X4 ∧ p X4)))) β†’ (((((p X4 ∧ (Β¬ p βˆ…)) β†’ ((ordinal X5 ∧ (((p X5 ∧ (((Β¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) ∧ transitive_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ SNo (f (V_ X7))))) β†’ (TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ (Β¬ p βˆ…))) ∧ p (f X5))) ∧ p βˆ…)) β†’ (Β¬ p X5)) ∧ p X5) ∧ ((Β¬ p X4) ∧ (ordinal X5 ∧ ((Β¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ p (binrep X3 (binrep X5 X2)) β†’ (Β¬ ordinal X4) β†’ (Β¬ p X5)))))) ∧ ((Β¬ p X4) β†’ (Β¬ exactly4 (f βˆ…))))) β†’ trichotomous_or_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ atleast2 X6)) ∧ atleast3 X3) β†’ (Β¬ exactly3 X4))) ∧ ((Β¬ exactly3 X5) ∧ (((Β¬ atleast3 X4) ∧ (((Β¬ p (f X3)) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ ((exactly4 X4 β†’ (Β¬ reflexive_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (Β¬ p X6)))) ∧ ((p X4 ∧ (Β¬ p X5)) ∧ p (f X3))) β†’ (Β¬ exactly5 X3))) ∧ ((Β¬ ordinal X2) ∧ ((exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) ∧ ((Β¬ totalorder_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ ((p X4 β†’ (((Β¬ p X4) β†’ atleast3 X4) β†’ (PNoLt (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) (Ξ»X6 : set β‡’ ((Β¬ exactly2 X3) ∧ (Β¬ exactly3 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ (((((((((((((Β¬ atleast5 X2) β†’ (Β¬ p X3) β†’ (Β¬ p X5)) β†’ (Β¬ p X5)) ∧ p X4) ∧ (((((equip X6 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ (exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) ∧ ((TransSet X6 ∧ ((Β¬ atleast4 X4) ∧ (Β¬ nat_p X2))) β†’ (p (combine_funcs X4 X2 (Ξ»X7 : set β‡’ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (Ξ»X7 : set β‡’ X7) X6) ∧ (exactly3 (Sing βˆ…) β†’ (Β¬ p X5)))))) β†’ (Β¬ exactly3 X5)) β†’ (Β¬ exactly3 X5)) ∧ (Β¬ p X6)) β†’ ((Β¬ setsum_p X5) ∧ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) β†’ exactly5 X4 β†’ (Β¬ atleast4 (f X5))) ∧ (Β¬ atleast4 (f X5))) β†’ (((p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) β†’ ((Β¬ binop_on X6 (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ βˆ…)) ∧ ((atleast2 X5 β†’ TransSet X6) β†’ p X2))) β†’ ((Β¬ exactly5 X5) β†’ ((Β¬ p X6) ∧ (Β¬ atleast3 X5))) β†’ ((p X6 ∧ (ordinal X4 ∧ (((p X3 ∧ (Β¬ PNo_upc (Ξ»X7 : set β‡’ Ξ»X8 : set β†’ prop β‡’ (Β¬ atleast2 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) X2 (Ξ»X7 : set β‡’ atleast5 X5))) β†’ TransSet βˆ…) ∧ (p X3 ∧ exactly4 X5)))) ∧ (p βˆ… β†’ (Β¬ p βˆ…) β†’ atleast4 X5 β†’ p X6))) β†’ ((Β¬ atleast3 X5) ∧ ((Β¬ p X4) β†’ p X4))) β†’ (((p X6 β†’ ((Β¬ atleast4 X6) ∧ (((set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ p X5) β†’ (Β¬ p X5)) ∧ atleast4 (f βˆ…))) β†’ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ nat_p X6)) ∧ (p X3 ∧ ((Β¬ trichotomous_or_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ p (f βˆ…) β†’ (Β¬ SNoLe X8 (f X8)))) β†’ atleast6 X5))) ∧ (((((((Β¬ p X5) β†’ p X6) β†’ ordinal X5 β†’ (Β¬ atleastp X5 X5)) ∧ (p X6 β†’ PNoLt X3 (Ξ»X7 : set β‡’ (((βˆ… ∈ X7) β†’ ((atleast6 X7 ∧ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ (Β¬ p X6))) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ p βˆ…) X6 (Ξ»X7 : set β‡’ (Β¬ p X4)) β†’ (Β¬ exactly5 X4))) β†’ trichotomous_or_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ p X7)) ∧ (Β¬ exactly2 (Sing (Inj0 X5)))) β†’ (Β¬ atleast5 X4) β†’ p X6))) ∧ p X5) ∧ SNo_ (f βˆ…) (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ ((((Β¬ atleast6 X5) β†’ (Β¬ p X6)) ∧ ((((atleast5 X6 β†’ ((((((set_of_pairs X4 β†’ p X5) β†’ p X6) ∧ atleast2 (f X5)) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ ((Β¬ p X2) ∧ p X5) β†’ atleast3 X6) ∧ (Β¬ TransSet X3))) β†’ (Β¬ p (f X6))) β†’ (p X5 ∧ ((X6 ∈ X5) ∧ (((Β¬ p X5) ∧ exactly3 X6) β†’ ((Β¬ p X6) ∧ (p X6 ∧ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) β†’ (Β¬ p X5))))) ∧ ((p X6 ∧ (Β¬ exactly4 X6)) β†’ ((((Β¬ atleast2 X5) β†’ p X6) β†’ (Β¬ p (Sep2 (f X5) (Ξ»X7 : set β‡’ X7) (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (exactly3 X7 ∧ (p X7 ∧ ((Β¬ p X8) β†’ (Β¬ exactly2 X6)))))))) ∧ atleastp X5 X5)))) β†’ (exactly2 X6 ∧ (((X6 ∈ X6) ∧ (((Β¬ p X4) β†’ (p X6 ∧ atleast2 (f X6)) β†’ (Β¬ setsum_p X3)) ∧ (Β¬ p X4))) β†’ (Β¬ atleast5 X6))) β†’ ((((atleast2 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (Β¬ p X6)) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ setsum_p X5)) β†’ p X6 β†’ p (f X5)) β†’ (Β¬ (f X3 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) ∧ (Β¬ exactly2 X2)) ∧ (ordinal (binunion X3 X2) ∧ (Β¬ exactly4 X6))) β†’ ((((Β¬ p (V_ X6)) β†’ (((Β¬ p X6) ∧ ((((Β¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ ordinal X5)) β†’ (Β¬ atleast5 X6)) ∧ exactly1of3 (nat_p X6) (atleast4 X5) (p X5))) ∧ ((Β¬ transitive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (p X7 ∧ (((p (f X3) β†’ atleast6 βˆ…) β†’ (Β¬ p (lam X8 (Ξ»X9 : set β‡’ X5)))) ∧ p βˆ…)))) ∧ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ p X5)) ∧ exactly3 X5)) X5 (Ξ»X6 : set β‡’ p X6) ∧ (Β¬ set_of_pairs X4))) β†’ (Β¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ (Β¬ atleast5 X4)))) ∧ ordinal X4))))) ∧ ((p βˆ… ∧ p X5) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ p (f X5)) ∧ p βˆ…)) ∧ (((Β¬ p X2) β†’ p (SNoElts_ (Inj0 X4))) β†’ ((Β¬ p βˆ…) ∧ (exactly5 βˆ… β†’ (((Β¬ atleast3 X3) ∧ atleast3 X4) ∧ (Β¬ p X4)))))) β†’ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ (p X3 ∧ ((Β¬ atleast5 X3) β†’ atleast4 X3 β†’ ((Β¬ SNo X5) ∧ exactly4 X2)))) ∧ ((p X5 β†’ (Β¬ p βˆ…)) β†’ ((Β¬ p X2) ∧ ((p X4 β†’ nat_p X5) ∧ (Β¬ ordinal βˆ…)))))) ∧ p X3) β†’ exactly4 X5)))) ∧ exactly5 X5)) β†’ atleast4 βˆ…)) ∧ (p X4 β†’ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ (Β¬ exactly2 X4)))) β†’ p X5 β†’ ((Β¬ p X4) ∧ p X5) β†’ ((((Β¬ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ (((((atleast3 X4 β†’ SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) β†’ ((Β¬ p X3) ∧ p X3)) β†’ p X4) β†’ p X4) β†’ (Β¬ p X4)) β†’ (Β¬ p X5))) β†’ exactly5 X5) ∧ ((Β¬ p X3) β†’ (((p (proj1 (Inj1 X5)) β†’ ordinal X3) β†’ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (((Β¬ atleast5 X3) ∧ (((Β¬ p X3) ∧ (Β¬ p X5)) ∧ ((Β¬ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ atleast2 X3))) ∧ (((Β¬ exactly5 X2) ∧ (Β¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ ((((Β¬ exactly3 βˆ…) β†’ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ (p X3 β†’ atleast2 X3)) β†’ (Β¬ atleast4 (proj0 βˆ…)))))))) β†’ p X4) ∧ (((((Β¬ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ p X4) β†’ atleast4 X5) β†’ (Β¬ p X5)) ∧ ((Β¬ p X4) ∧ (((((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ exactly3 (f X5)) β†’ (Β¬ p X5)) ∧ p X5) ∧ ((((Β¬ ordinal X5) ∧ (Β¬ atleast3 (setminus X3 βˆ…))) β†’ ((Β¬ atleast6 X5) ∧ (Β¬ p X4))) ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) ∧ (Β¬ atleast2 X4)) ∧ (((Β¬ p X3) ∧ (Β¬ p X4)) ∧ (Β¬ p X4)))))) β†’ (Β¬ exactly4 X3)) β†’ p X4) β†’ (p X5 β†’ atleast4 (binrep X4 (⋃ (⋃ X5)))) β†’ (Β¬ p X5))) β†’ nat_p βˆ…) ∧ (atleast3 X5 ∧ (((Β¬ TransSet X4) β†’ (((Β¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ (Β¬ atleast3 X5)) ∧ (Β¬ atleast4 X5))) ∧ ((Β¬ atleast4 βˆ…) β†’ (TransSet βˆ… ∧ (ordinal X4 β†’ ((Β¬ atleast6 βˆ…) ∧ ((X4 = binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ (p X4 ∧ (((Β¬ p X2) ∧ ((((((Β¬ atleast4 (V_ X5)) ∧ (Β¬ p X4)) β†’ (f (f X5) ∈ X3)) ∧ (p (ordsucc X2) β†’ p βˆ…)) ∧ p X2) ∧ nat_p X5)) β†’ TransSet X5)))))))))))) ∧ (atleast2 (f X4) β†’ (((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) β†’ (Β¬ ordinal X2) β†’ p X3 β†’ (Β¬ exactly4 (f (f X5)))) β†’ p X3) ∧ ((Β¬ exactly4 X4) ∧ (((Β¬ p X5) β†’ atleast6 X5 β†’ p βˆ…) ∧ (p X4 ∧ (p X5 β†’ (Β¬ reflexive_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (Β¬ p X6)))))))))) β†’ ((((Β¬ p X4) β†’ p X3) β†’ (Β¬ atleast4 X4)) β†’ p X2) β†’ (p X4 ∧ ((((((Β¬ SNoLe X4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ ((((((((Β¬ exactly5 X4) ∧ (p X5 ∧ (Β¬ p X5))) ∧ atleast3 X4) ∧ (p X3 ∧ ((((setsum_p X4 β†’ p βˆ…) β†’ ((Β¬ atleast3 X5) ∧ (X3 ∈ X3)) β†’ (Β¬ p X5)) ∧ p (f (f (SNoElts_ βˆ…)))) ∧ (((Β¬ p X3) β†’ (Β¬ atleast2 X5)) β†’ (exactly4 X4 β†’ (Β¬ atleast3 X4) β†’ (exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ (Β¬ p X5) β†’ p X5) β†’ (p X4 ∧ ((((p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (Β¬ p X5)) β†’ (Β¬ atleast3 X3)) β†’ ordinal X3) β†’ p X5 β†’ ((p X4 β†’ (Β¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ atleast3 X5)) β†’ p X5) β†’ TransSet X5)))) ∧ ((Β¬ p βˆ…) β†’ (Β¬ atleast3 X3) β†’ atleast5 X5 β†’ (Β¬ p (SNoElts_ X2)))) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ (((Β¬ p X5) β†’ ((((Β¬ p X5) β†’ ((Β¬ atleast3 X2) ∧ (Β¬ ordinal X5))) ∧ (Β¬ p X5)) ∧ (Β¬ (X4 βŠ† X3)))) ∧ (Β¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))) ∧ ((atleast2 X3 ∧ SNo X4) β†’ (atleast3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) ∧ ((Β¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ p X5))))) ∧ (exactly5 βˆ… β†’ ((Β¬ eqreln_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (Β¬ p βˆ…))) β†’ (atleast2 (f X5) ∧ (nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) β†’ exactly3 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) β†’ ((p X3 β†’ p X5) ∧ (Β¬ exactly2 X4)))) β†’ p X5) β†’ ordinal (Inj0 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ ((Β¬ atleast2 X3) ∧ (nat_p βˆ… β†’ linear_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (Β¬ p βˆ…)))) β†’ ordinal (f X4) β†’ (Β¬ p βˆ…)) ∧ (((Β¬ p X5) β†’ (((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p X2)) ∧ ((p X4 ∧ ((p X4 β†’ ((atleast5 X5 β†’ (Β¬ p (setsum X5 βˆ…)) β†’ (atleast4 X5 β†’ (Β¬ equip X3 βˆ…) β†’ p X4 β†’ (Β¬ atleastp X2 X5)) β†’ ((p X5 β†’ (Β¬ p X4)) β†’ exactly4 X3) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ exactly3 X4))) β†’ (((Β¬ p X4) ∧ (((Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ ((Β¬ p X3) β†’ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ atleast2 X5)) β†’ ((p X4 β†’ ((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ (p (Inj0 X5) ∧ ((Β¬ p X5) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) β†’ ((Β¬ SNo X4) ∧ (p βˆ… ∧ (Β¬ ordinal X5)))) β†’ reflexive_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ p (f X7))) ∧ p X4))) ∧ SNo βˆ…))) ∧ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (Β¬ p βˆ…)) ∧ (((((p X5 β†’ (Β¬ exactly2 X5)) ∧ (Β¬ p X5)) β†’ atleast4 X4) β†’ (atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) ∧ ((atleast5 βˆ… β†’ (exactly2 X5 ∧ (((exactly5 (f X4) ∧ p (f X5)) β†’ (Β¬ p (SNoElts_ X2))) ∧ ((Β¬ exactly2 X4) ∧ exactly4 X5))) β†’ (Β¬ p X4)) ∧ SNoLe X5 βˆ…))) β†’ ((p X5 ∧ p X4) ∧ (Β¬ reflexive_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ ((Β¬ p βˆ…) ∧ ((((Β¬ p (f βˆ…)) β†’ exactly2 X7 β†’ (Β¬ p X7)) β†’ (linear_i (Ξ»X8 : set β‡’ Ξ»X9 : set β‡’ (((p X4 ∧ ((((Β¬ p X9) ∧ (Β¬ atleast2 βˆ…)) ∧ (Β¬ atleast2 X9)) ∧ (((Β¬ atleast6 βˆ…) β†’ atleast3 X9) ∧ ((((((p X3 β†’ (p X8 ∧ (Β¬ ordinal (f X9)))) β†’ ((transitive_i (Ξ»X10 : set β‡’ Ξ»X11 : set β‡’ p (f X10)) β†’ ((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ (Β¬ atleast3 X8))) ∧ (p X4 β†’ (Β¬ atleast3 X8)))) β†’ atleast6 (Pi X9 (Ξ»X10 : set β‡’ X9))) β†’ (Β¬ atleast4 (Inj0 X8)) β†’ (((Β¬ reflexive_i (Ξ»X10 : set β‡’ Ξ»X11 : set β‡’ ordinal X10)) ∧ p βˆ…) ∧ (Β¬ exactly2 X8))) β†’ p X7 β†’ (((p X9 β†’ ((Β¬ ordinal X2) β†’ (((atleast3 X5 β†’ (p X9 ∧ ((Β¬ exactly4 X8) β†’ p X8)) β†’ (((((Β¬ p X8) β†’ p X8) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ ((Β¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ ((atleast3 X8 β†’ p X8) β†’ ((atleast5 X8 β†’ p X3) ∧ (Β¬ p X9))))) ∧ SNoLt X8 X3)) β†’ exactly5 X9) ∧ p X9)) β†’ (SNo X8 β†’ ((((((Β¬ p X8) β†’ (((p X8 β†’ (Β¬ atleast2 X8)) β†’ (exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) β†’ (((exactly3 X9 ∧ setsum_p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ atleast6 X8)) ∧ (Β¬ atleast6 X3))) β†’ (Β¬ p X8)) ∧ (((((p X9 ∧ ((set_of_pairs (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ ((((Β¬ p X5) β†’ TransSet (Pi X4 (Ξ»X10 : set β‡’ X5))) β†’ p βˆ… β†’ ((Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ ((((atleast6 X9 ∧ ((Β¬ exactly4 X9) β†’ p X8)) β†’ ((Β¬ strictpartialorder_i (Ξ»X10 : set β‡’ Ξ»X11 : set β‡’ atleast6 X11)) ∧ (X9 ∈ X2))) β†’ atleast5 X8) ∧ ((Β¬ antisymmetric_i (Ξ»X10 : set β‡’ Ξ»X11 : set β‡’ p X11 β†’ exactly2 X10)) ∧ (p X3 β†’ atleast4 X5)))) β†’ p X9 β†’ ((Β¬ p X9) ∧ p X6)) β†’ (Β¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ exactly4 (Inj1 X8))) β†’ ((((p X9 ∧ exactly3 X8) ∧ (X8 ∈ SetAdjoin X8 X8)) ∧ (Β¬ p X8)) β†’ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ p X9)) β†’ p X9) β†’ (Β¬ SNoLt X8 (f X9)))) ∧ (((Β¬ exactly4 X9) ∧ (Β¬ p X8)) ∧ (Β¬ set_of_pairs X2))) ∧ (Β¬ (βˆ… βŠ† X9))) β†’ (((((p βˆ… β†’ (p X8 ∧ (nat_p X8 ∧ (Β¬ p X8)))) β†’ equip X5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (Β¬ p X9)) β†’ p βˆ…) ∧ (Β¬ nat_p X9))) β†’ atleast3 (setsum X9 X9))) β†’ (Β¬ SNo X9)) β†’ ((Β¬ nat_p X2) ∧ ((Β¬ atleast2 X4) ∧ atleast2 (⋃ X9)))) ∧ (((((((Β¬ p X9) ∧ (((Β¬ p X8) β†’ TransSet X5 β†’ ((p X9 ∧ (ordinal X9 ∧ atleast6 βˆ…)) ∧ ((atleast4 X8 β†’ ((Β¬ p βˆ…) β†’ ((p X9 β†’ ((((Β¬ p βˆ…) ∧ (Β¬ atleast2 X8)) β†’ p X8) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ (set_of_pairs X8 ∧ TransSet X4)) β†’ (Β¬ atleast2 X3) β†’ ((p X8 ∧ (Β¬ p X8)) ∧ p X8)) β†’ (Β¬ ordinal X3)) β†’ (Β¬ p X9)))) ∧ (exactly4 X8 β†’ p X8))) ∧ p X5) ∧ (((Β¬ p βˆ…) ∧ (ordinal X3 ∧ set_of_pairs X9)) ∧ p X8)) β†’ (p X9 β†’ (Β¬ p X7)) β†’ (((Β¬ p βˆ…) β†’ (p X9 β†’ p βˆ…) β†’ (Β¬ p X8)) β†’ ((Β¬ atleast5 X4) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) β†’ p X9 β†’ ((((Β¬ exactly3 X9) ∧ tuple_p X9 X8) ∧ ((Β¬ p X9) ∧ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ atleast4 X4)) ∧ ((((Β¬ exactly2 (setprod X8 X2)) β†’ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (p X2 ∧ ((Β¬ p X9) β†’ p X9))) β†’ (Β¬ atleast4 X9) β†’ setsum_p X8 β†’ (Β¬ p X3))) β†’ (p X8 ∧ (Β¬ p X8)))) β†’ p X8) ∧ p βˆ…)) β†’ ((Β¬ trichotomous_or_i (Ξ»X10 : set β‡’ Ξ»X11 : set β‡’ (((((atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) ∧ (ordinal X11 β†’ (Β¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) ∧ (((((Β¬ exactly5 (f X4)) ∧ p X10) ∧ (Β¬ exactly4 X11)) ∧ (((Β¬ TransSet X10) β†’ ((((Β¬ p X10) β†’ (Β¬ set_of_pairs (f (f X11)))) β†’ atleast2 βˆ… β†’ (p X11 ∧ (((Β¬ atleast5 X11) β†’ (X10 ∈ X11)) ∧ atleast2 (⋃ X2))) β†’ (((Β¬ p X11) ∧ (Β¬ atleast2 X10)) ∧ exactly5 X4)) ∧ nat_p X11)) ∧ ((Β¬ p X11) β†’ (nat_p X10 ∧ (Β¬ reflexive_i (Ξ»X12 : set β‡’ Ξ»X13 : set β‡’ p X12)))))) ∧ p X10)) ∧ ((Β¬ p X11) β†’ (setsum_p X11 ∧ p X10) β†’ p X3)) ∧ p X7) β†’ ((((((Β¬ p X11) ∧ (Β¬ p βˆ…)) β†’ ((Β¬ exactly2 (combine_funcs (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) (Ξ»X12 : set β‡’ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) (Ξ»X12 : set β‡’ X12) X6)) ∧ (((Β¬ exactly2 (V_ X11)) ∧ (Β¬ PNoLt_ (𝒫 X11) (Ξ»X12 : set β‡’ (Β¬ exactly5 X11)) (Ξ»X12 : set β‡’ symmetric_i (Ξ»X13 : set β‡’ Ξ»X14 : set β‡’ (Β¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))))) ∧ ((p X11 β†’ (((((Β¬ inj X11 (f X11) (Ξ»X12 : set β‡’ X11)) β†’ (((atleast5 X10 ∧ (atleast6 X11 ∧ ((Β¬ p X11) ∧ p X10))) ∧ p X2) ∧ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ (((Β¬ p X8) β†’ p X11) ∧ (Β¬ p X10))) β†’ ((p (Unj (f X11)) ∧ exactly2 X10) ∧ (((((Β¬ p (f βˆ…)) ∧ (Β¬ p X10)) ∧ (Β¬ p X11)) ∧ ((Β¬ irreflexive_i (Ξ»X12 : set β‡’ Ξ»X13 : set β‡’ (Β¬ p X2))) β†’ p X7)) β†’ (Β¬ exactly5 X10)))) β†’ (Β¬ p βˆ…)) β†’ p X10 β†’ (Β¬ p X11)) β†’ ((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ (Β¬ p X10)) β†’ (Β¬ p X11) β†’ (nat_p (f X8) ∧ (Β¬ atleast2 X11)))))) β†’ p X6) ∧ ((Β¬ p X10) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) ∧ (Β¬ exactly3 X10))) β†’ p X11)) ∧ (Β¬ p X8)) β†’ ((atleast2 X4 β†’ ((Β¬ p (f X8)) ∧ ((Β¬ exactly5 X9) ∧ ((((Β¬ nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast2 X9) β†’ (Β¬ p X9)) ∧ (((((((Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ partialorder_i (Ξ»X10 : set β‡’ Ξ»X11 : set β‡’ (Β¬ atleast2 X10))) β†’ (Β¬ nat_p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) ∧ ordinal (f X6)) ∧ p X8) ∧ (p βˆ… β†’ p X8)) β†’ (Β¬ atleast3 βˆ…))) β†’ (Β¬ p X8))))) ∧ (p X9 ∧ nat_p X9))) β†’ (exactly5 X8 ∧ p X7)) ∧ (Β¬ p (⋃ X8)))) β†’ (Β¬ p (binunion X9 (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) β†’ (((((((Β¬ exactly2 βˆ…) β†’ ((Β¬ atleast3 X8) ∧ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) β†’ ((Β¬ p X8) ∧ ((exactly5 X5 ∧ ((((Β¬ p X8) β†’ (Β¬ PNo_downc (Ξ»X10 : set β‡’ Ξ»X11 : set β†’ prop β‡’ (((Β¬ X11 βˆ…) ∧ p X9) ∧ ((atleast2 X9 β†’ (reflexive_i (Ξ»X12 : set β‡’ Ξ»X13 : set β‡’ (exactly4 X12 ∧ SNo_ (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) X13) β†’ atleast3 (lam X12 (Ξ»X14 : set β‡’ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ X11 X6 β†’ (Β¬ ordinal X9)) β†’ reflexive_i (Ξ»X12 : set β‡’ Ξ»X13 : set β‡’ set_of_pairs X13 β†’ (X11 X13 ∧ p X3))) β†’ ((Β¬ p X9) ∧ TransSet X6)))) X2 (Ξ»X10 : set β‡’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))) β†’ (Β¬ p X9)) ∧ (Β¬ atleastp X9 (binunion βˆ… X9)))) β†’ ((Β¬ p X3) ∧ ((Β¬ exactly3 X3) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))))) β†’ nat_p X8) β†’ (Β¬ exactly2 X8) β†’ ((Β¬ SNoLe βˆ… X6) ∧ (((Β¬ p X8) β†’ ordinal X4) β†’ ((Β¬ ordinal X3) ∧ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ TransSet X9))) ∧ ((((Β¬ p (𝒫 X4)) ∧ p X9) ∧ (Β¬ atleast4 X8)) ∧ ((Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (((Β¬ nat_p X9) β†’ (Β¬ p X3)) ∧ (((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) β†’ ((p βˆ… β†’ ((((p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) β†’ (Β¬ p X9)) β†’ p X8) ∧ (Β¬ ordinal X8)) ∧ (Β¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) ∧ ((Β¬ atleast2 X8) ∧ (atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ ((exactly4 X3 β†’ nat_p X3 β†’ exactly4 X8) β†’ p X9))))) β†’ (Β¬ setsum_p X8)) ∧ (p (f X8) β†’ p (𝒫 X3))))))) ∧ ((p X3 ∧ atleast2 X3) ∧ (Β¬ atleast5 X9))) ∧ (p X9 ∧ (p X9 ∧ (Β¬ exactly2 X9)))))))) β†’ (((Β¬ (X9 βŠ† binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ ((p X8 β†’ (Β¬ exactly3 X4)) ∧ ((p X9 ∧ ((((Β¬ irreflexive_i (Ξ»X10 : set β‡’ Ξ»X11 : set β‡’ ((Β¬ atleast3 X10) ∧ (set_of_pairs X10 β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))) ∧ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ p X9) β†’ (Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) β†’ atleast3 (UPair X9 βˆ…)) ∧ (Β¬ p X3))) ∧ ((Β¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ TransSet X8))))) ∧ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ atleast3 X6))) β†’ (Β¬ p X6)) β†’ exactly2 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ (Β¬ p X7))))))))))) ∧ (((Β¬ ordinal βˆ…) ∧ ((((((Β¬ p X5) β†’ (((Β¬ p X4) β†’ (Β¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ ((Β¬ p X4) β†’ p X4))) β†’ (Β¬ p X3)) ∧ (Β¬ atleast3 X5)) β†’ (Β¬ atleast4 (f X4))) ∧ (p X4 β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))))) β†’ inj X4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) (Ξ»X6 : set β‡’ X6))))))))) β†’ ((exactly4 X5 ∧ ((Β¬ p X4) β†’ (Β¬ atleast2 X4))) ∧ p X4))) β†’ (Β¬ p X5)) β†’ (Β¬ nat_p X3)) β†’ (exactly3 (f X3) ∧ (nat_p X5 β†’ (Β¬ p X5))))) ∧ ((Β¬ p X5) ∧ ((((Β¬ p X3) β†’ (Β¬ setsum_p X5) β†’ (Β¬ p X4)) ∧ (Β¬ p X5)) ∧ atleast3 X3)))) β†’ TransSet βˆ…) ∧ (((Β¬ exactly3 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ atleast5 X4)) β†’ (((atleast4 X3 ∧ exactly2 βˆ…) ∧ (Β¬ (X5 βŠ† X3))) ∧ (Β¬ atleast4 X4)))) β†’ ((((Β¬ exactly5 X3) β†’ nat_p X4 β†’ (((Β¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ p (f X5)) ∧ (p X4 ∧ atleast5 X3))) β†’ (Β¬ p X4)) ∧ ((Β¬ exactly4 X4) β†’ ((Β¬ nat_p X4) ∧ (((Β¬ p X2) ∧ (p X4 ∧ (atleast4 (Sing X5) ∧ exactly4 (f βˆ…)))) ∧ (p X3 ∧ ((Β¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ exactly3 X4 β†’ p X5 β†’ (atleast6 X5 ∧ (((p X3 β†’ p X5) β†’ ((Β¬ exactly4 X4) ∧ (((Β¬ exactly5 X5) β†’ atleast6 X5) β†’ p βˆ…))) ∧ atleast3 X4)) β†’ p X5 β†’ ((Β¬ atleast6 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p X4)))))) β†’ atleast5 (f X5))))))) ∧ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) β†’ (((Β¬ p X4) β†’ ((((Β¬ p X3) ∧ (((p X4 β†’ (Β¬ SNo X2)) ∧ (Β¬ nat_p X3)) ∧ (((Β¬ nat_p X5) β†’ ((Β¬ p (ordsucc X4)) ∧ (p X5 ∧ (((Β¬ atleast5 X3) ∧ (atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) β†’ p (f X4))) β†’ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))) ∧ (((atleast6 X4 β†’ (atleast2 X4 β†’ exactly2 X3) β†’ (Β¬ atleast4 X2)) β†’ ((Β¬ p X3) ∧ (p X4 ∧ ((((Β¬ p X5) ∧ ((Β¬ p X5) ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (((Β¬ p X5) ∧ exactly5 (f X5)) ∧ ((Β¬ exactly3 X5) ∧ (Β¬ set_of_pairs X3)))))) ∧ (Β¬ exactly5 X5)) ∧ p X4)))) β†’ exactly5 X5)))) ∧ (p X5 ∧ ((Β¬ p X3) β†’ (((Β¬ p X4) β†’ ((p X4 β†’ (Β¬ p X5)) ∧ p (f X5))) ∧ (Β¬ set_of_pairs X4)) β†’ (Β¬ exactly4 X2)))) ∧ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ (Β¬ p (𝒫 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))) ∧ (nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ ((Β¬ exactly4 X4) ∧ (Β¬ p X5))))))) β†’ ((((((((Β¬ p X3) β†’ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) ∧ (p X5 ∧ (Β¬ atleast6 X3)))) ∧ ((((Β¬ p X3) β†’ (Β¬ atleast4 X3)) ∧ ((exactly2 X5 ∧ ((Β¬ atleast6 X5) ∧ atleast2 X3)) β†’ (Β¬ p X5))) ∧ (Β¬ p βˆ…))) β†’ (((Β¬ p (PSNo (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) (Ξ»X6 : set β‡’ p βˆ… β†’ p (proj1 X3)))) β†’ (Β¬ SNo X4) β†’ p X4) ∧ TransSet X2)) ∧ exactly4 X4) β†’ p X3) ∧ (atleast3 (SetAdjoin X5 X4) β†’ atleast4 (Inj0 X5))) ∧ (Β¬ p X4))) β†’ atleast4 X5 β†’ ((PNo_downc (Ξ»X6 : set β‡’ Ξ»X7 : set β†’ prop β‡’ atleast2 X4) (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) (Ξ»X6 : set β‡’ (Β¬ p X6)) β†’ p X3) ∧ (((Β¬ p X4) ∧ (exactly3 X4 β†’ atleast2 (binintersect (f X5) (f X5)))) β†’ ((Β¬ setsum_p X5) ∧ (((Β¬ p X3) β†’ (Β¬ exactly5 X2)) ∧ p X4))))) ∧ TransSet X4) ∧ (p X4 β†’ p X5)) β†’ (Β¬ exactly2 X3)))) β†’ ((Β¬ atleast5 X3) ∧ (Β¬ ordinal X5))) ∧ (Β¬ p (f (UPair (Inj1 (lam2 X5 (Ξ»X6 : set β‡’ X2) (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ X6))) (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))))))) β†’ ((Β¬ p X2) ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (atleast2 X5 ∧ (atleast3 X4 β†’ (Β¬ p (binrep X4 X3)) β†’ (((Β¬ p X5) ∧ p X3) ∧ p X5) β†’ p X4 β†’ SNo_ βˆ… X4))))) β†’ (Β¬ exactly5 X5)) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) β†’ ordinal X4) ∧ (Β¬ p X5)) ∧ (Β¬ (X5 βŠ† X5))))))) ∧ ((Β¬ p X5) ∧ (((Β¬ atleast3 X5) ∧ ((Β¬ p X4) β†’ (Β¬ p X5))) ∧ p X4)))) (Ξ»X5 : set β‡’ exactly4 X4))) β†’ p X3) β†’ (ordinal X4 ∧ p (f X3))) β†’ atleast4 X4))) ∧ (Β¬ p X4))) ∧ (βˆ€X3 βŠ† f X2, βˆ€X4 : set, ((exactly3 X3 ∧ atleast3 X3) ∧ atleast2 X4)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMUkppRFQ6cCaiVnxihtxJPzhwnTQBTWmAm)
((βˆƒX2 : set, βˆ€X3 : set, (βˆƒX4 ∈ X3, p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (βˆƒX4 : set, ((X4 ∈ X4) ∧ (((((SNo βˆ… β†’ (Β¬ p βˆ…)) ∧ (p X3 ∧ ((((Β¬ exactly5 X3) ∧ ((Β¬ SNo (SNoLev βˆ…)) β†’ (Β¬ p X3))) ∧ ((Β¬ p X3) ∧ (p X4 ∧ (Β¬ p X2)))) ∧ atleast2 X3))) ∧ ((Β¬ SNoLe X2 X3) ∧ p X4)) β†’ atleast4 X3 β†’ p X2) ∧ (Β¬ atleast3 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))))) ∧ atleast5 βˆ…)
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMRJNAUZ5wC5TJL1JKjYgkJ62MFR75X4Wb2)
βˆƒX2 : set, βˆƒX3 ∈ X2, βˆƒX4 : set, ((X4 βŠ† βˆ…) ∧ ((((X2 ∈ βˆ…) ∧ p X2) ∧ (((X4 βŠ† X4) ∧ (((Β¬ p X4) β†’ (((((Β¬ p X4) ∧ (((Β¬ setsum_p (f X4)) ∧ (Β¬ TransSet X2)) β†’ (p βˆ… ∧ (Β¬ p X2)))) ∧ (p X3 ∧ (Β¬ p X4))) β†’ (Β¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ (((((Β¬ p X3) β†’ exactly3 βˆ…) ∧ ((Β¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ((Β¬ exactly4 X4) ∧ (((((((Β¬ p X3) β†’ p X3 β†’ (Β¬ p X3)) ∧ atleast5 X4) β†’ atleast6 X3) β†’ ((Β¬ p X4) ∧ (((Β¬ atleast2 X4) β†’ (Β¬ p (f X3))) ∧ (((Β¬ p X3) β†’ (Β¬ p X3)) β†’ (equip X4 X3 ∧ (Β¬ atleast2 X3))))) β†’ ordinal βˆ…) ∧ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ atleast6 X4)))) ∧ (Β¬ p X3)) β†’ (Β¬ p X4) β†’ exactly3 X3))) ∧ (((p X4 ∧ (Β¬ p X3)) β†’ ((((Β¬ exactly3 X4) ∧ (((Β¬ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ p βˆ…)) ∧ (((set_of_pairs (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ ((nat_p X4 ∧ (Β¬ atleast3 X3)) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ p βˆ…) β†’ (Β¬ exactly2 (f X4))))) β†’ (Β¬ atleast6 X4)) ∧ atleast6 X4)) ∧ ((p (ap (f X3) X2) β†’ (Β¬ p X3)) ∧ (Β¬ p X3))))) β†’ (SNoLe (mul_nat (proj1 (f βˆ…)) X4) (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) ∧ ((((atleast3 X2 ∧ ((Β¬ p X4) ∧ (Β¬ exactly5 (f (Unj X4))))) β†’ SNo (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ (Β¬ exactly1of2 (atleast6 X3) (p X2))) β†’ p X3)))) β†’ (Β¬ atleast5 (𝒫 (𝒫 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMXoJmiPzjGF4njUQxjsH7SSqjJai2Z32GB)
(βˆƒX2 ∈ binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…, βˆƒX3 ∈ X2, ((Β¬ p X3) ∧ (βˆƒX4 : set, ((X4 βŠ† X3) ∧ (Β¬ atleast6 X4))))) β†’ (βˆƒX2 : set, βˆƒX3 : set, ((βˆ€X4 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…, p (f X3)) ∧ atleast2 (f X2)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMWWKK7zrXM6hSThggbKcs4PmUgkR4ESP4B)
βˆƒX2 ∈ SNoLev (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))), βˆ€X3 βŠ† f X2, (βˆƒX4 : set, ((X4 βŠ† f X2) ∧ p X4)) β†’ (βˆƒX4 : set, ((((p X3 ∧ ((atleast6 βˆ… ∧ (Β¬ atleast3 (Inj1 X4))) β†’ (Β¬ p X2))) β†’ (((((Β¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ (Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ p (f X3)) β†’ (Β¬ p (f X4))) ∧ (exactly2 X4 ∧ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) β†’ (((p X4 β†’ (p X3 ∧ exactly5 βˆ…)) ∧ (Β¬ p (f X3))) ∧ p X4)) ∧ (((Β¬ p X2) β†’ ((((((Β¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ (Β¬ atleast4 (V_ (f X2)))) β†’ (Β¬ set_of_pairs X3)) ∧ (Β¬ SNoLt (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) (f X2))) β†’ (Β¬ p X3) β†’ ordinal βˆ…) ∧ equip βˆ… X4)) ∧ ((Β¬ atleastp X4 X3) β†’ atleast5 (V_ βˆ…) β†’ ((Β¬ exactly2 X3) ∧ (SNo_ X3 X2 ∧ p X4)) β†’ ((Β¬ (X4 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ ((p X4 β†’ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ atleast4 (binintersect (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) X4)) β†’ (Β¬ set_of_pairs X3) β†’ ((Β¬ p X3) β†’ p (f X3)) β†’ (Β¬ ordinal X4)))))) β†’ atleast5 X4)
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMazG4S3XuSHu7Zh7w4RxYgqicL1pGaBiRr)
βˆ€X2 : set, (βˆƒX3 : set, ((βˆƒX4 : set, ((X4 βŠ† βˆ…) ∧ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) β†’ ((Β¬ atleast6 (f X3)) ∧ (Β¬ p X3))))) ∧ (βˆ€X4 : set, p X4 β†’ (((atleast5 X3 β†’ (((((Β¬ exactly2 X4) β†’ ((((Β¬ atleast3 X3) ∧ (((Β¬ p X3) ∧ (Β¬ (X2 ∈ X3))) β†’ (p (f βˆ…) ∧ exactly4 X4))) ∧ ((Β¬ p X2) β†’ (((Β¬ atleast3 X4) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ (ordinal X2 ∧ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))))) ∧ (((((exactly4 X3 β†’ (Β¬ atleast2 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) ∧ (atleast6 βˆ… β†’ ((ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) ∧ (exactly3 (f (SetAdjoin X4 X4)) ∧ SNo (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) ∧ (((Β¬ p X3) β†’ (Β¬ atleast3 X3)) β†’ (Β¬ SNoEq_ X4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) X2) β†’ TransSet X4)))) ∧ exactly3 (f X2)) ∧ (Β¬ p X2)) β†’ (exactly3 (setprod X4 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (exactly5 (f (ordsucc X3)) ∧ (Β¬ setsum_p X2))) β†’ exactly4 X3 β†’ (Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ set_of_pairs (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))) β†’ (Β¬ exactly2 X4)) ∧ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ p (Unj X4)) β†’ ((exactly5 X3 ∧ ((Β¬ ordinal X3) ∧ nat_p X4)) ∧ ((atleast4 X2 ∧ atleast2 X3) β†’ (((((p X4 ∧ ((((((p (f X4) ∧ (Β¬ set_of_pairs X3)) β†’ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ (p βˆ… ∧ (Β¬ atleast4 X3)))) β†’ (Β¬ p (f X3)) β†’ (((Β¬ p (f X3)) ∧ setsum_p X3) ∧ (((Β¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ p X3) β†’ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) β†’ (exactly5 (⋃ (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ atleast6 (f X2)) β†’ ((Β¬ p βˆ…) ∧ ordinal X4))) β†’ ((((Β¬ nat_p βˆ…) ∧ atleast4 X2) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ ((Β¬ p βˆ…) β†’ (p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) ∧ TransSet X4)))) ∧ SNo X3) ∧ p X4)) ∧ ((Β¬ p (setprod (f X3) X2)) β†’ (((exactly3 X4 β†’ ((Β¬ p X2) β†’ atleast3 X3 β†’ inj X4 X3 (Ξ»X5 : set β‡’ βˆ…) β†’ (Β¬ p X4)) β†’ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (Β¬ exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ (Β¬ p βˆ…) β†’ nat_p X4) ∧ nat_p (proj1 X2)))) β†’ (((atleast5 (f X3) β†’ (Β¬ set_of_pairs X4)) ∧ (exactly4 (f (f X4)) β†’ (Β¬ TransSet (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ atleast6 (binunion X4 X3))) ∧ (p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ ((((p X4 ∧ p X4) β†’ ((exactly5 X4 ∧ (Β¬ TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ (((p X3 ∧ (p X4 β†’ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ atleast4 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) β†’ (Β¬ p X2)) β†’ (Β¬ (X2 ∈ X4)))))) β†’ (Β¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ ((Β¬ atleast6 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ (((Β¬ SNoLt (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) X3) ∧ (p (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (Β¬ exactly1of3 (exactly2 X2) (atleast3 X3) ((Β¬ p X3) ∧ (exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (((((((setsum_p X3 ∧ ((Β¬ p X2) β†’ (((Β¬ exactly5 X3) ∧ (Β¬ p X4)) β†’ (Β¬ p X4)) β†’ (Β¬ p βˆ…) β†’ nat_p X3)) β†’ ((((Β¬ atleast4 (f (f (f X2)))) ∧ (((Β¬ atleast2 X2) β†’ (((p X4 ∧ (Β¬ atleast2 X3)) ∧ exactly5 X3) ∧ ((((Β¬ p X4) ∧ ((((p (f βˆ…) β†’ (Β¬ atleast2 X4)) β†’ ((((Β¬ p X2) ∧ ((atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) ∧ ((p X3 β†’ ((exactly2 X4 ∧ TransSet βˆ…) ∧ (Β¬ atleast3 X3))) β†’ (Β¬ set_of_pairs βˆ…) β†’ (Β¬ p X4))) ∧ (p X3 ∧ (Β¬ atleast5 βˆ…)))) β†’ (((p X3 β†’ (tuple_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) X4 ∧ ((Β¬ p X4) ∧ ((Β¬ nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))))) β†’ p (f (f X3)) β†’ (((Β¬ p (𝒫 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) β†’ p X2) ∧ ((p X3 ∧ ((p βˆ… β†’ ((Β¬ p (SNoLev X3)) ∧ (((Β¬ p X3) β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ ((Β¬ atleast6 X3) β†’ (Β¬ bij X3 X2 (Ξ»X5 : set β‡’ X4)) β†’ (Β¬ p X2)))) β†’ p X3) ∧ (Β¬ p (f X4)))) β†’ p X3))) ∧ ((Β¬ exactly2 X3) ∧ (X4 βŠ† X3)))) ∧ ((Β¬ SNo X4) ∧ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) ∧ (((nat_p X4 ∧ (atleast2 X3 ∧ (Β¬ p X3))) β†’ ((p (SetAdjoin (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) X3) ∧ p βˆ…) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ (((((Β¬ p X3) ∧ ((((p βˆ… β†’ ((Β¬ exactly2 X2) ∧ (Β¬ p (f (f X4))))) β†’ (X2 ∈ βˆ…) β†’ (p X2 ∧ (Β¬ atleast2 X4))) β†’ (Β¬ p (f X2))) ∧ (p X4 β†’ (Β¬ p X4)))) ∧ ((Β¬ atleast4 (f X2)) β†’ p X3 β†’ (Β¬ p X3))) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ ((((Β¬ p X2) β†’ atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ p X4)) ∧ (((X4 = X3) ∧ p (f X4)) ∧ ((((Β¬ p (f X3)) ∧ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ ((p X4 β†’ p X2) ∧ ((exactly5 X4 ∧ ((Β¬ p X3) ∧ (((TransSet X4 β†’ (Β¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ (Β¬ exactly4 X2)) β†’ (Β¬ p X3)))) β†’ TransSet X3))) ∧ ((Β¬ set_of_pairs X3) β†’ ((Β¬ trichotomous_or_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ (X6 ∈ X5)))) ∧ (((((((Β¬ p X4) β†’ atleast2 βˆ…) ∧ ((atleast3 (famunion X4 (Ξ»X5 : set β‡’ X5)) ∧ (Β¬ p X3)) ∧ (Β¬ p X4))) β†’ ((Β¬ p X4) ∧ ((Β¬ atleast5 X4) β†’ ((TransSet X4 β†’ (Β¬ (X2 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (p X3 ∧ (p X2 β†’ (p X3 ∧ (ordinal βˆ… β†’ ((((p (f X4) ∧ (((((Β¬ p X4) β†’ p X2 β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ p (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ (Β¬ p X3)) β†’ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ (atleast5 (f X4) β†’ (((Β¬ p X4) β†’ p X4 β†’ (Β¬ p X3)) ∧ (Β¬ p X3)) β†’ p X4 β†’ (Β¬ p (f X3)))))) β†’ ((((((atleast3 X4 β†’ (reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (((Β¬ atleast4 X4) ∧ (Β¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ TransSet X6)) ∧ (((Β¬ p X3) ∧ (Β¬ exactly3 (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) ∧ ((p X3 ∧ p (f X3)) β†’ (Β¬ TransSet X2)))) β†’ atleastp X2 (Inj1 X2)) ∧ (Β¬ p (Repl (f X3) (Ξ»X5 : set β‡’ X5)))) β†’ (Β¬ p X3)) β†’ (Β¬ p X2)) ∧ (X4 ∈ X2)) ∧ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ set_of_pairs X6)))) ∧ (Β¬ set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ p X4))))))))) β†’ ((((((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ atleast6 X4)) β†’ (Β¬ p X2)) ∧ p X3) ∧ ((p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ setsum_p βˆ…) β†’ atleast4 X3)) β†’ p (setprod X4 X4)) β†’ ((Β¬ p X3) ∧ (exactly2 X3 ∧ p X4))) ∧ (Β¬ p X4))) β†’ exactly3 X3) β†’ (Β¬ (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ… ∈ X4))))))) ∧ (Β¬ TransSet (f X3))) β†’ (Β¬ ordinal X4))))) β†’ (Β¬ atleast4 X2)) ∧ (p (UPair X3 X3) ∧ p X4))) β†’ (((p X3 ∧ ((((Β¬ nat_p X2) ∧ setsum_p X4) β†’ (Β¬ p βˆ…)) ∧ (((Β¬ SNo X3) β†’ (((Β¬ trichotomous_or_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (atleast5 (f X5) ∧ p X6))) ∧ p X4) ∧ (p βˆ… β†’ (exactly4 X3 ∧ p X3)))) β†’ (Β¬ p X3)))) ∧ (((Β¬ exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ p X3)) β†’ p (f βˆ…))) ∧ p X3))) β†’ exactly5 X4) β†’ ((Β¬ atleast5 X2) ∧ ((Β¬ p X4) β†’ (Β¬ exactly2 X4) β†’ p X4))))) ∧ (((Β¬ nat_p X3) β†’ (Β¬ atleast2 X4)) β†’ (((p X3 ∧ nat_p X2) ∧ (setsum_p (Sing βˆ…) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ ((((((Β¬ p X3) ∧ (((Β¬ p X3) ∧ ((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ p X4) β†’ (TransSet X2 ∧ (Β¬ p X3))) β†’ (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ… βŠ† X3))) ∧ p X3)) β†’ (Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ atleast4 X8)))) β†’ (Β¬ exactly2 X2)) ∧ ((Β¬ p X3) β†’ (Β¬ exactly4 X2))) β†’ (Β¬ atleast4 X3)) ∧ (Β¬ exactly2 βˆ…)))))) ∧ ((exactly3 X4 ∧ p X4) β†’ ((Β¬ nat_p X4) ∧ p (⋃ X3)))) ∧ (Β¬ p X4))) β†’ p (Sing X4)) β†’ (Β¬ setsum_p X3) β†’ (Β¬ atleast5 X4) β†’ p X4) β†’ p βˆ…) β†’ p (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ exactly5 X4)))))) ∧ ((((atleast3 (f X3) β†’ ((Β¬ p X4) ∧ ((exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) ∧ exactly4 X2) ∧ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ p X4) β†’ p X3) ∧ (Β¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))))) ∧ p βˆ…)))) ∧ atleast6 βˆ…) β†’ p X4) β†’ ((exactly4 (f X3) ∧ (((Β¬ p X4) ∧ (Β¬ atleast3 X3)) ∧ ((Β¬ p X3) ∧ atleast2 X3))) ∧ (Β¬ p X2))))) β†’ p (f X2)
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMFw2TWsgL3wWiHbTgkXPvNMXdLuXN3oRkd)
(((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (βˆƒX2 : set, (((βˆƒX3 ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…), (Β¬ p X3)) β†’ exactly2 X2) ∧ ((βˆƒX3 : set, (Β¬ exactly4 X2)) β†’ (βˆ€X3 βŠ† binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…, ((βˆƒX4 ∈ X2, (Β¬ atleast6 X4)) ∧ (βˆ€X4 βŠ† X2, (exactly2 X4 β†’ p X2 β†’ (Β¬ SNo X4)) β†’ ((p X3 β†’ (Β¬ p X2)) ∧ ((p X3 β†’ (Β¬ atleast2 X3)) ∧ ((Β¬ p (f X3)) ∧ ((((Β¬ p X3) ∧ (Β¬ nat_p X4)) ∧ (Β¬ exactly3 (f X4))) ∧ (((Β¬ nat_p X3) β†’ ((((Β¬ p X3) ∧ atleast4 X4) ∧ (Β¬ (f X4 ∈ X4))) ∧ (((((Β¬ p (Inj1 X4)) β†’ (exactly4 X3 ∧ p X4)) ∧ (Β¬ p (f (f X3)))) β†’ (Β¬ exactly3 X3)) β†’ (Β¬ exactly4 X3)))) ∧ (Β¬ atleast4 X2))))))))))))) ∧ (Β¬ p (𝒫 βˆ…))) β†’ (atleast2 (f (f (f βˆ…))) ∧ (βˆƒX2 : set, ((X2 βŠ† βˆ…) ∧ atleastp βˆ… (f X2))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMP8FtNQSpGKF1HTQB99pfJrpcPR1HaHuKD)
βˆ€X2 : set, ((atleast4 X2 ∧ (exactly5 X2 β†’ (βˆƒX3 : set, (p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) ∧ (Β¬ p X3))))) β†’ (Β¬ set_of_pairs (f X2))) β†’ (βˆ€X3 : set, (βˆƒX4 : set, ((X4 βŠ† f X2) ∧ (((TransSet X3 β†’ atleast6 X2) β†’ (((p X4 β†’ (Β¬ atleast2 X4) β†’ (Β¬ ordinal X2)) ∧ atleast2 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ p βˆ…)) ∧ atleast2 (proj1 X3)))) β†’ (βˆƒX4 : set, ((X4 βŠ† X3) ∧ (exactly4 βˆ… ∧ (((Β¬ p (Inj1 X4)) ∧ (Β¬ p X4)) β†’ atleast3 (f X2) β†’ (Β¬ p X3) β†’ (Β¬ SNo X4))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMQupTx6RGY9Ye2pY6UcRxMST4HsbJbidAM)
βˆ€X2 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…), βˆƒX3 : set, ((βˆ€X4 βŠ† X3, (Β¬ atleast6 X2)) ∧ (p (SNoElts_ X3) β†’ atleast5 (f X3) β†’ (βˆ€X4 ∈ f X3, ((Β¬ p X4) ∧ ((((Β¬ atleast4 X3) β†’ (atleast6 X2 β†’ atleast6 X3) β†’ atleast6 X3) ∧ atleast5 X2) β†’ p X4))) β†’ (βˆ€X4 βŠ† Unj (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)), p X2)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMMpj3rbFHknh5ikFxBSz7mPyXjnNcUpokT)
((βˆƒX2 : set, ((βˆ€X3 βŠ† X2, ((Β¬ p (f (f X3))) ∧ (βˆƒX4 ∈ βˆ…, (p βˆ… ∧ (((Β¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ p X4) β†’ exactly5 (f X4)))))) ∧ exactly2 X2)) ∧ (βˆƒX2 : set, βˆ€X3 βŠ† f (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))), exactly3 (f (Sing (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMRPLjR3GxrsnCpE66p425A4kMUh6K18sqD)
((atleast6 (f (lam2 (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) (Ξ»X2 : set β‡’ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) (Ξ»X2 : set β‡’ Ξ»X3 : set β‡’ X3))) ∧ (βˆ€X2 : set, ((βˆƒX3 : set, ((X3 βŠ† f (f X2)) ∧ (βˆƒX4 : set, ((Β¬ p X2) ∧ (p X2 ∧ (Β¬ TransSet (f X4))))))) β†’ (Β¬ set_of_pairs X2)) β†’ ((βˆ€X3 : set, (βˆƒX4 ∈ X2, (Β¬ p X2)) β†’ (βˆ€X4 βŠ† X2, atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ p X2 β†’ (((Β¬ p (binunion (Sing (f (f (ordsucc X4)))) X2)) β†’ SNo_ βˆ… X4 β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) β†’ ((((Β¬ p X3) β†’ ((Β¬ p X3) ∧ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (((Β¬ atleast6 βˆ…) ∧ ((Β¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ exactly4 X4)) β†’ (Β¬ SNo X3))) ∧ (exactly4 (proj1 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ ((Β¬ atleast3 βˆ…) β†’ p (binunion X4 X3)))) β†’ exactly4 X3) ∧ (Β¬ p X3)))) β†’ (βˆƒX3 : set, (βˆ€X4 βŠ† βˆ…, (Β¬ p X3)) β†’ (βˆƒX4 : set, (ordinal X3 ∧ exactly2 X4)))) β†’ (Β¬ exactly4 X2))) ∧ ((βˆƒX2 : set, ((((βˆƒX3 : set, ((βˆƒX4 : set, (atleast2 X4 ∧ setsum_p X2)) ∧ ((βˆƒX4 : set, ((Β¬ (X4 = X3)) ∧ (((Β¬ p X4) β†’ (Β¬ p (f βˆ…))) β†’ ordinal X3))) β†’ TransSet (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ (βˆ€X3 : set, (βˆ€X4 : set, ((exactly5 X2 β†’ (Β¬ atleast2 X4) β†’ ((Β¬ inj (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) X4 (Ξ»X5 : set β‡’ X5)) ∧ exactly4 X3)) ∧ p X4) β†’ (Β¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (βˆƒX4 : set, ((X4 βŠ† V_ X3) ∧ equip βˆ… (f X3))))) β†’ (Β¬ SNoLe X2 X2)) ∧ ((βˆƒX3 : set, (((Β¬ p (f βˆ…)) β†’ (βˆ€X4 : set, (((((atleast4 X4 ∧ (p X4 β†’ (((exactly5 X3 β†’ (((atleast6 X3 ∧ ((X4 βŠ† βˆ…) β†’ ((((Β¬ p (f X2)) ∧ (((((Β¬ tuple_p X3 (f X3)) ∧ ((Β¬ exactly3 X4) ∧ (Β¬ p X2))) β†’ atleast3 X3) β†’ (Β¬ totalorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((Β¬ TransSet X5) ∧ (Β¬ nat_p X6))))) β†’ (SNoLt X3 X4 ∧ (setsum_p X4 β†’ p (f X3) β†’ ordinal βˆ…)))) ∧ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ p X2))) β†’ (p X3 ∧ (((Β¬ p X2) ∧ ((Β¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ SNoLt X3 (f X3))) ∧ (((Β¬ p X2) β†’ equip X4 X2) β†’ (Β¬ atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))))) β†’ (Β¬ set_of_pairs X2) β†’ p X2) ∧ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (atleast2 (combine_funcs X5 X5 (Ξ»X7 : set β‡’ Inj0 X2) (Ξ»X7 : set β‡’ f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) βˆ…) ∧ p X6) β†’ p X3 β†’ ((Β¬ ordinal X6) β†’ (p βˆ… ∧ ((p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ (Β¬ p βˆ…)) β†’ p X5))) β†’ p X5))) ∧ p X4) ∧ (((atleast6 (f (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ atleast4 X3 β†’ (p (Unj X2) β†’ (Β¬ SNo X3)) β†’ (Β¬ atleast5 X4)) ∧ ((Β¬ atleast4 βˆ…) ∧ ((Β¬ inj X2 X2 (Ξ»X5 : set β‡’ X2)) β†’ (Β¬ ordinal X4)))) ∧ p X3)))) β†’ exactly5 X4) β†’ (Β¬ p (Pi X3 (Ξ»X5 : set β‡’ proj1 X3)))) β†’ exactly2 X2) ∧ ((p X3 ∧ (((Β¬ p X4) β†’ (Β¬ p X3) β†’ (Β¬ p X2) β†’ ((Β¬ nat_p βˆ…) ∧ (Β¬ atleast6 X4))) ∧ p X4)) β†’ (Β¬ p βˆ…))) β†’ p X4)) ∧ (βˆ€X4 βŠ† X3, (p X3 ∧ ((((atleast3 (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ p βˆ…) ∧ (((((((((Β¬ p X4) ∧ atleast5 (f X3)) ∧ (Β¬ set_of_pairs X3)) β†’ p X4) β†’ (((Β¬ exactly2 (f (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ stricttotalorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ (Β¬ nat_p X3))) ∧ ((Β¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ exactly2 X2)) ∧ (((Β¬ atleast2 X4) ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ p X3)) ∧ p X2) β†’ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ nat_p X3))) β†’ (Β¬ antisymmetric_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ exactly2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ ((((Β¬ p X5) ∧ ((Β¬ p X5) β†’ (((Β¬ p βˆ…) ∧ (Β¬ p X6)) ∧ atleast2 X4))) β†’ ((Β¬ SNo_ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) X6) ∧ ((ordinal (combine_funcs X5 X2 (Ξ»X7 : set β‡’ f X7) (Ξ»X7 : set β‡’ Repl X5 (Ξ»X8 : set β‡’ X8)) βˆ…) β†’ (Β¬ p X4)) β†’ (((Β¬ atleast5 (Inj0 (f X5))) ∧ (p βˆ… β†’ ordinal X5)) β†’ atleast2 (V_ X6)) β†’ (((ordinal X5 ∧ (exactly5 X6 β†’ (Β¬ atleast3 X5))) β†’ (Β¬ atleast5 X5) β†’ (p (f X5) ∧ ((Β¬ p X4) β†’ (X5 = X6) β†’ (Β¬ p X6)))) ∧ (((p X6 ∧ atleast3 X5) ∧ (Β¬ atleast6 βˆ…)) ∧ ((Β¬ p X3) ∧ ((Β¬ p X6) β†’ ((((set_of_pairs (𝒫 X5) ∧ p X6) β†’ (Β¬ exactly3 X5)) ∧ p X2) ∧ (Β¬ atleast5 X6))))))))) ∧ (Β¬ p X5))))) ∧ ((Β¬ p (f X4)) ∧ ordinal X2)))))) β†’ (βˆ€X3 : set, ((βˆ€X4 ∈ f X2, p X3) ∧ (βˆƒX4 : set, ((X4 βŠ† f βˆ…) ∧ (Β¬ p (f X3))))) β†’ (βˆƒX4 ∈ X3, TransSet X4))))) β†’ (βˆ€X2 : set, (βˆ€X3 : set, (((βˆƒX4 ∈ X3, ((((Β¬ atleast6 X3) β†’ ((Β¬ SNoEq_ X2 (f X4) X3) ∧ ((atleast4 X4 β†’ (TransSet X4 ∧ atleast5 X3)) ∧ (Β¬ p X3)))) ∧ (Β¬ nat_p X3)) ∧ (Β¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) ∧ (Β¬ SNoLt (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) X3)) ∧ (Β¬ p X2))) β†’ (βˆƒX3 : set, p (f (f X3)))))) β†’ ((βˆƒX2 : set, ((X2 βŠ† binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ (βˆƒX3 : set, ((βˆ€X4 : set, ((Β¬ p X4) ∧ PNoLe X2 (Ξ»X5 : set β‡’ per_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ ((Β¬ p X6) ∧ exactly2 X6))) X4 (Ξ»X5 : set β‡’ exactly2 (f X2))) β†’ (Β¬ p X3)) ∧ (βˆƒX4 : set, (Β¬ p X2)))))) ∧ (βˆƒX2 ∈ f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)), atleast2 X2))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMcCzra1QHwqKMGwebeHT1fUHVKiw6Xa3Ym)
βˆ€X2 : set, (βˆƒX3 : set, ((βˆƒX4 : set, (p X4 ∧ (Β¬ p X4))) ∧ (βˆƒX4 : set, ((X4 βŠ† βˆ…) ∧ (exactly4 X2 β†’ (Β¬ p X3)))))) β†’ (βˆƒX3 : set, ((X3 βŠ† binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (βˆƒX4 : set, (((atleast5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ exactly2 X4) β†’ (p (f βˆ…) ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) ∧ (((p βˆ… ∧ ((((p X4 ∧ ((((p X2 β†’ (nat_p X4 ∧ ((Β¬ exactly4 X3) β†’ (p (f X3) ∧ (Β¬ p X4)))) β†’ (p βˆ… ∧ ((Β¬ ordinal X4) β†’ (Β¬ tuple_p X3 X4)))) β†’ ((Β¬ exactly2 X4) ∧ (Β¬ p X3))) β†’ (Β¬ (f X4 = X4))) β†’ p X4 β†’ atleast6 X4)) ∧ ((p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ (((Β¬ exactly3 X2) ∧ ((atleast6 (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ ((Β¬ p (𝒫 βˆ…)) ∧ (p X2 ∧ ((Β¬ p (f X2)) β†’ (((Β¬ p X3) ∧ (((p X4 ∧ (((Β¬ p βˆ…) β†’ ((p (f X2) β†’ ((p X3 β†’ (Β¬ nat_p X2)) ∧ ((Β¬ p (f X3)) ∧ (Β¬ p X4)))) ∧ (Β¬ exactly3 (f (SetAdjoin (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) X3))))) β†’ (Β¬ p X3) β†’ ((p X4 ∧ p X3) ∧ atleast4 βˆ…))) ∧ (Β¬ p βˆ…)) ∧ (Β¬ atleast2 X4))) ∧ (Β¬ p X4)))))) ∧ (Β¬ ordinal X3))) β†’ p X3 β†’ p X4)) ∧ (Β¬ exactly4 X3))) ∧ ((PNo_upc (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ prop β‡’ (Β¬ atleast5 X4)) (proj1 (f X2)) (Ξ»X5 : set β‡’ (Β¬ TransSet X3)) β†’ ((Β¬ p X3) ∧ (Β¬ p X4))) ∧ (((((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ p X3) β†’ atleast4 (setsum X3 (f X4))) β†’ (((((atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ ((p X4 β†’ p (f X2)) β†’ p X4)) ∧ p X2) β†’ (Β¬ setsum_p X4)) β†’ (Β¬ p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) ∧ (Β¬ nat_p X3))) β†’ ((Β¬ p (f X2)) ∧ (Β¬ exactly4 X4))))) β†’ ((setsum_p (SetAdjoin X3 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (((p βˆ… ∧ (nat_p X4 ∧ (Β¬ ordinal (f X4)))) ∧ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ p X3) β†’ (Β¬ p X3))) β†’ ((((Β¬ p X2) β†’ p X2 β†’ (Β¬ atleast5 βˆ…)) β†’ p X4) β†’ p X2) β†’ exactly5 (SetAdjoin X4 (f X2))) β†’ (Β¬ TransSet X2)) ∧ nat_p X3))) β†’ (((p X3 β†’ ((atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) β†’ (exactly2 X2 β†’ (Β¬ PNo_downc (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ prop β‡’ (Β¬ exactly4 X5) β†’ transitive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ atleast4 X7)) X4 (Ξ»X5 : set β‡’ (((p X4 ∧ ((p X4 ∧ (((Β¬ setsum_p X4) ∧ (p X5 β†’ nat_p X4)) ∧ (exactly5 X5 ∧ (Β¬ p X3)))) β†’ (Β¬ exactly2 X5))) ∧ ((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) β†’ p X5) β†’ (Β¬ p X4))) β†’ (((Β¬ p X3) ∧ ((Β¬ exactly1of3 (Β¬ p X5) (exactly5 X5) (p (f X4))) β†’ ((Β¬ atleast5 X4) ∧ set_of_pairs X4))) ∧ (Β¬ p X5)) β†’ ((Β¬ atleast4 X4) ∧ (p X3 β†’ ((((((Β¬ p X5) ∧ (Β¬ p X4)) β†’ TransSet X4) β†’ (equip (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) X5 ∧ (p X2 β†’ atleast3 (f (f X5))))) β†’ (Β¬ p X5) β†’ (((Β¬ p X2) ∧ (Β¬ p X5)) β†’ (p X4 ∧ ((Β¬ set_of_pairs (f (f (ReplSep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) (Ξ»X6 : set β‡’ ((p X6 ∧ (Β¬ p X3)) ∧ (Β¬ setsum_p X2))) (Ξ»X6 : set β‡’ X6))))) β†’ p X4))) β†’ ((Β¬ (X4 ∈ X5)) ∧ TransSet X4)) ∧ ((((((((Β¬ p βˆ…) β†’ SNo_ X3 X4 β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ atleast3 X5) ∧ ((Β¬ nat_p X2) β†’ (Β¬ p X5))) β†’ (Β¬ p (f (f X4)))) β†’ (((atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) β†’ (Β¬ atleast3 X3)) ∧ p X4) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) β†’ (Β¬ p X5) β†’ (X4 ∈ X4))) β†’ (Β¬ atleast4 X3)) ∧ (Β¬ p X2)))))) β†’ (Β¬ symmetric_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (Β¬ atleast5 X3))) β†’ (Β¬ p X3)))) β†’ (((p X4 β†’ ((((Β¬ p βˆ…) ∧ ((p X3 β†’ p X4) β†’ (Β¬ p X3) β†’ (TransSet X2 ∧ ((Β¬ atleast3 X4) ∧ ((Β¬ p X3) β†’ ((Β¬ p (ordsucc X3)) ∧ ((Β¬ p βˆ…) β†’ p βˆ…))))))) ∧ (Β¬ p X4)) ∧ ((Β¬ p (UPair X4 X3)) ∧ ((p (ordsucc (f X4)) ∧ ((Β¬ atleast5 (proj1 X3)) ∧ (Β¬ tuple_p X2 X3))) ∧ (Β¬ exactly3 (SNoElts_ X3)))))) β†’ (nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ (((Β¬ p (f X3)) ∧ (Β¬ p X3)) ∧ (Β¬ exactly2 X3)))) ∧ p (⋃ (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))) ∧ atleast5 X3)) β†’ (Β¬ p (proj1 X2)) β†’ (((Β¬ p X3) ∧ (((Β¬ TransSet X3) ∧ ((Β¬ exactly4 X3) β†’ p X4)) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ p X3) β†’ p (f X4)) ∧ (p βˆ… ∧ (((Β¬ atleast2 X3) ∧ (Β¬ setsum_p X4)) β†’ (p (f (f X4)) β†’ (((p βˆ… β†’ ordinal X2) β†’ (Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (exactly4 X3 β†’ (Β¬ exactly5 X4)) β†’ (Β¬ per_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ p X8)))))) ∧ (setsum_p X4 β†’ (p X4 ∧ (SNo_ X3 (mul_nat X3 (f X3)) ∧ (p X4 ∧ (exactly2 X3 β†’ (Β¬ exactly3 X3))))) β†’ (((reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ (X3 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ atleast6 X4)) β†’ p X3) ∧ (exactly3 X2 β†’ (Β¬ p X2))))) β†’ (Β¬ p X4)) β†’ set_of_pairs X4)))) ∧ (Β¬ p X4))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMM2eFdNuZBpjxWQksBSjMGGUMQLzkmqxiV)
p (f βˆ…) β†’ (βˆƒX2 : set, ((βˆƒX3 : set, (p (f βˆ…) ∧ (βˆƒX4 : set, ((X4 βŠ† f βˆ…) ∧ atleast3 X2)))) ∧ (βˆƒX3 : set, (exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ((Β¬ SNo_ (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (βˆƒX4 : set, ((((Β¬ p X2) β†’ (((Β¬ p X4) β†’ (Β¬ (X4 ∈ Pi (f X3) (Ξ»X5 : set β‡’ X5)))) ∧ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ p X3) β†’ ((Β¬ nat_p X2) ∧ ((Β¬ nat_p X3) β†’ (((((p X3 ∧ atleast2 X2) ∧ p X2) β†’ (Β¬ p X4) β†’ ((Β¬ atleast6 X4) ∧ (Β¬ set_of_pairs X3))) ∧ p X2) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ (Β¬ p X4)) ∧ ((Β¬ p X4) β†’ exactly2 X4)))))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMTRAce3PEhhXncoknrBMo88WhDVq4tSy64)
((βˆ€X2 βŠ† binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…, ((Β¬ p X2) ∧ (βˆ€X3 ∈ f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))), βˆƒX4 : set, (atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ p X4)))) ∧ ((βˆƒX2 ∈ f (f (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))), βˆ€X3 ∈ X2, (Β¬ p (f (f (f X2))))) ∧ (((((((βˆ€X2 : set, βˆƒX3 : set, ((βˆ€X4 βŠ† X3, (Β¬ SNoLt X4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ ((βˆƒX4 ∈ βˆ…, p X4) ∧ (Β¬ SNo (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))) β†’ (βˆ€X2 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…, nat_p X2)) ∧ (βˆƒX2 ∈ binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…, (ordinal X2 ∧ (βˆ€X3 : set, atleast6 (f X3))) β†’ (βˆƒX3 ∈ f X2, (Β¬ linear_i (Ξ»X4 : set β‡’ Ξ»X5 : set β‡’ ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (Β¬ p X4)) β†’ ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (Β¬ p (Sing X5)))))))) ∧ SNo βˆ…) β†’ ((βˆ€X2 βŠ† binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)), ((βˆ€X3 : set, ((Β¬ atleast5 X3) ∧ (βˆƒX4 ∈ f βˆ…, p X3))) ∧ ((βˆ€X3 βŠ† binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…, βˆ€X4 : set, p βˆ… β†’ (Β¬ (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ… ∈ X2))) ∧ (βˆƒX3 : set, βˆƒX4 ∈ f X3, (((Β¬ atleast3 X3) β†’ p X3) ∧ (p (⋃ X3) β†’ (Β¬ atleast4 X2))))))) ∧ (Β¬ p βˆ…))) β†’ (βˆ€X2 βŠ† βˆ…, βˆƒX3 ∈ binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…, (βˆƒX4 : set, (((SNo (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) β†’ (((Β¬ p X4) ∧ ((TransSet X4 β†’ (Β¬ p X3) β†’ ((Β¬ p X3) ∧ (Β¬ ordinal X2))) β†’ (Β¬ p X4))) ∧ (Β¬ p X3))) ∧ ((Β¬ p (setsum X3 X2)) β†’ ordinal X3 β†’ (Β¬ atleast5 X4) β†’ (Β¬ p X3)))) β†’ ((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (βˆ€X4 ∈ X3, ((Β¬ exactly5 X3) ∧ ((p (f X4) β†’ (Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))))))) ∧ (βˆƒX2 : set, exactly2 βˆ…))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMVbV8Hgh2LghLArjUes4fhVm87oS2T6VzU)
βˆƒX2 : set, ((X2 βŠ† If_i (βˆƒX3 ∈ f (f (f (setminus (f (f (f (f (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))) βˆ…))), βˆƒX4 : set, ((βˆ€X5 : set, (((Β¬ TransSet X4) β†’ ((p X5 β†’ (Β¬ per_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ ((((Β¬ atleast4 X7) ∧ (Β¬ exactly5 X6)) ∧ ((((Β¬ nat_p X7) ∧ (Β¬ exactly5 X7)) ∧ (((Β¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p X5)) ∧ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ ((Β¬ p X3) β†’ (f X7 ∈ βˆ…))))) ∧ ((Β¬ p X7) β†’ (Β¬ p X7) β†’ ((Β¬ (X6 = X4)) ∧ (p X7 β†’ (Β¬ reflexive_i (Ξ»X8 : set β‡’ Ξ»X9 : set β‡’ p X3)) β†’ (atleast6 X6 ∧ p βˆ…)))))) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ ((Β¬ setsum_p X6) β†’ atleast4 X7 β†’ p X7))) β†’ p (f X6)))) ∧ p X4)) ∧ (((((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ exactly4 βˆ…) β†’ ((Β¬ nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (Β¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)))) ∧ (((Β¬ p X3) ∧ ((Β¬ atleast2 X4) β†’ nat_p βˆ…)) β†’ (p X3 ∧ ((p X5 ∧ (Β¬ p X3)) ∧ (((Β¬ p βˆ…) ∧ (Β¬ atleast6 X4)) β†’ (Β¬ exactly3 X4)))))) ∧ p X4))) ∧ (βˆƒX5 : set, ((X5 βŠ† X3) ∧ ((atleast5 X4 ∧ ((Β¬ p X5) β†’ ((((Β¬ p X4) ∧ (((Β¬ p (f X4)) β†’ (Β¬ p X3)) β†’ (Β¬ p X4))) β†’ nat_p X5 β†’ (Β¬ p X5)) ∧ ((Β¬ p X5) ∧ p βˆ…)))) β†’ (atleast6 (f X5) ∧ (TransSet (f X5) ∧ p X4)) β†’ exactly2 X4))))) βˆ… (f (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)))) ∧ (βˆƒX3 : set, (Β¬ (X2 ∈ X3))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMFyc37pwXBEARHvAtAKsziUf9uA1cnz7DH)
βˆ€X2 : set, antisymmetric_i (Ξ»X3 : set β‡’ Ξ»X4 : set β‡’ (Β¬ p X3)) β†’ ((βˆƒX3 : set, SNo (f (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) ∧ ((((βˆƒX3 : set, ((X3 βŠ† X2) ∧ (Β¬ p (Inj0 (f X3))))) β†’ p (f X2)) ∧ p (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ (βˆƒX3 : set, ((βˆ€X4 : set, ((Β¬ atleast5 X2) β†’ tuple_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) X4) β†’ ((Β¬ TransSet X4) ∧ p (f (f βˆ…))) β†’ ((Β¬ p X3) ∧ (((Β¬ set_of_pairs (f X3)) β†’ (Β¬ ordinal X3)) ∧ (per_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (((p (f X5) β†’ (Β¬ p X6) β†’ ((((Β¬ p X5) ∧ ((((((((Β¬ SNoEq_ X5 X6 βˆ…) ∧ (ordinal X6 ∧ atleast5 X5)) ∧ (((p X4 ∧ ((((p X6 β†’ (Β¬ p X6) β†’ (p (Inj0 X6) ∧ TransSet X5)) β†’ (((TransSet βˆ… ∧ (Β¬ (X5 ∈ X2))) β†’ p X6 β†’ p βˆ… β†’ (((p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ p X6)) β†’ partialorder_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ p X5)) β†’ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ ((p (f X6) ∧ (exactly3 X6 β†’ (Β¬ p X5) β†’ exactly4 (f X6))) ∧ atleast4 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ TransSet X2) ∧ SNo_ X6 (lam (V_ X5) (Ξ»X7 : set β‡’ X5)))) β†’ SNoLe X6 X6) ∧ ((X3 ∈ nat_primrec βˆ… (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ f (Inj1 βˆ…)) βˆ…) β†’ (Β¬ p X6)))) ∧ atleast4 X5) ∧ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ (p X5 β†’ ((((Β¬ atleast2 X6) ∧ ((p X2 ∧ (p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ (((((((Β¬ p X2) ∧ ((Β¬ p X6) ∧ p X6)) ∧ (Β¬ eqreln_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ p X2) β†’ ((((Β¬ p X8) ∧ (Β¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ atleast3 (f X7)) β†’ SNo (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ exactly4 (f X7))))) β†’ (p X5 β†’ p (⋃ βˆ…)) β†’ exactly2 (⋃ βˆ…)) β†’ ((Β¬ atleast3 X5) ∧ (Β¬ p X6)) β†’ (Β¬ TransSet X6) β†’ (((Β¬ p X4) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (setsum_p X5 ∧ p X6))) β†’ p X2) β†’ (((Β¬ PNoLt_ (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) (Ξ»X7 : set β‡’ (Β¬ p X7)) (Ξ»X7 : set β‡’ p (ordsucc X7) β†’ (Β¬ p X6))) β†’ (Β¬ nat_p X6)) β†’ p X2) β†’ (Β¬ p X5)))) β†’ exactly5 X6)) β†’ (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…) ∈ SNoElts_ X5)) ∧ atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ (Β¬ p X6)) ∧ p X6) ∧ p (f X5)) ∧ p X5)) β†’ ((Β¬ atleast3 X6) ∧ (Β¬ atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) ∧ ((atleast5 X5 ∧ (p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ (Β¬ exactly5 X6))) β†’ p (f X5) β†’ (exactly2 X6 ∧ (Β¬ exactly5 X6))))) ∧ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) ∧ ((Β¬ p X6) ∧ (Β¬ nat_p X6)))) ∧ (((Β¬ exactly3 X2) β†’ atleast3 X4) β†’ equip (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) X3))))) ∧ (βˆƒX4 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…, (atleast5 X3 ∧ (Β¬ p X3)))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMWVBapsKkQHQ2Wej7iMV3yy2SGFQZacojN)
βˆƒX2 : set, ((βˆƒX3 : set, ((X3 βŠ† X2) ∧ set_of_pairs βˆ…)) ∧ (βˆƒX3 : set, βˆƒX4 : set, ((((Β¬ totalorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (X5 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ exactly3 X3) ∧ (((Β¬ exactly4 (f (Inj1 (⋃ X2)))) ∧ ((Β¬ atleast6 X2) ∧ (Β¬ trichotomous_or_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((Β¬ (βˆ… βŠ† X3)) ∧ (Β¬ atleast6 X6)) β†’ (Β¬ p X6))))) ∧ atleast4 X2)) ∧ (p X2 ∧ p X4))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMHg2M5uBxQmPY4h8cquRa1nbAecqAqsWAd)
βˆ€X2 : set, p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ (((βˆ€X3 : set, (Β¬ p X2)) ∧ (Β¬ p X2)) ∧ (nat_p X2 ∧ ((Β¬ p X2) ∧ (βˆƒX3 : set, βˆƒX4 ∈ βˆ…, (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMcoi55Wb3FoVb2e7NJLcLgAzkMTbjSMM1U)
p (f (f (PSNo (f (f (f βˆ…))) (Ξ»X2 : set β‡’ (Β¬ trichotomous_or_i (Ξ»X3 : set β‡’ Ξ»X4 : set β‡’ (((p X2 β†’ atleast4 X4) ∧ (Β¬ p (f βˆ…))) β†’ p X3) β†’ (Β¬ p X3)))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMXBUiNZaxVn6Edw4SDN9NdwbrWdiWh7GnV)
(Β¬ nat_p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ (βˆ€X2 : set, (βˆ€X3 : set, βˆ€X4 : set, ((p X3 β†’ p (SNoLev X3)) β†’ (Β¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ (Β¬ ordinal X2)) β†’ (Β¬ p X2))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMTyyAoB8dFJ6TkHrN3tVqidspTbNxbnRsy)
βˆƒX2 : set, (((βˆƒX3 : set, ((βˆ€X4 : set, p (f X3) β†’ (Β¬ p X4)) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ (βˆƒX3 : set, ((X3 βŠ† f (f βˆ…)) ∧ p X3))) ∧ ((βˆ€X3 : set, ((βˆƒX4 ∈ f X3, (Β¬ p X4)) β†’ (βˆ€X4 βŠ† X2, nat_p X4)) β†’ exactly5 X2) ∧ (βˆ€X3 βŠ† X2, (((βˆ€X4 ∈ X3, ((Β¬ p X2) ∧ (Β¬ p X2)) β†’ p X3) ∧ p X3) β†’ (βˆƒX4 ∈ X2, SNoLe X4 X4)) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMbzpWP1ovCTofqRLe2Z5uiXKw5HLfpHcMb)
βˆƒX2 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…), βˆƒX3 : set, ((βˆƒX4 : set, p X4) ∧ (βˆƒX4 ∈ X3, ((atleast5 X3 β†’ (atleast3 (SetAdjoin X2 X4) ∧ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ p X4))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMKoX7hviQm6jhXDodxFtBSeh5gWux7ck2d)
βˆ€X2 ∈ f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…), βˆ€X3 : set, (βˆƒX4 : set, ((SNo βˆ… β†’ ((atleast4 X3 β†’ (Β¬ equip βˆ… X4)) ∧ (((Β¬ exactly3 X2) ∧ ((Β¬ atleast4 X3) ∧ (X3 ∈ X4))) ∧ (p (proj0 X3) β†’ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))))) ∧ (Β¬ nat_p (PSNo X3 (Ξ»X5 : set β‡’ exactly5 X2))))) β†’ (βˆ€X4 : set, atleast2 X2 β†’ p (⋃ (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMYL378ndVXv5XEmkuj6HS4YqR2j7xUaqaa)
βˆƒX2 : set, ((((βˆ€X3 : set, p X2 β†’ (βˆƒX4 : set, (((Β¬ atleast5 X3) β†’ (Β¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ atleast3 (V_ (f (UPair X4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))))))) ∧ (((((βˆ€X3 : set, ((βˆ€X4 : set, ((((Β¬ exactly3 (f (f (f (setsum (f X4) X2))))) β†’ (Β¬ bij (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) X2 (Ξ»X5 : set β‡’ f X3))) β†’ (Β¬ exactly4 X4)) ∧ (((exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) β†’ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ (p (f X3) ∧ (((((Β¬ p X4) β†’ (Β¬ p X3)) β†’ (Β¬ set_of_pairs X4)) β†’ SNo X4) ∧ ((Β¬ atleast6 (ordsucc X3)) β†’ (p X4 β†’ SNo X2) β†’ p X3)))))) ∧ ((βˆƒX4 ∈ f X2, p βˆ…) β†’ (Β¬ p (f (f X3))))) β†’ (Β¬ p (f X2))) β†’ (βˆƒX3 : set, ((βˆ€X4 βŠ† f X2, ordinal (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (Β¬ TransSet X3)))) β†’ setsum_p X2) β†’ (Β¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ p X2)) ∧ (βˆƒX3 : set, ((X3 βŠ† binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ (βˆ€X4 βŠ† X3, (X4 = X2)))))) ∧ ((βˆ€X3 ∈ βˆ…, (Β¬ set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ ordinal X2)) ∧ (βˆ€X3 : set, SNo (f (f X3)) β†’ (βˆƒX4 : set, (tuple_p X3 X4 ∧ ((Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p (proj0 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))))) ∧ ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p X3) β†’ nat_p (f X2)))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMGSMNYdXJzgfu2mpw5SRARWmb2kwokmF8o)
((βˆ€X2 βŠ† f (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…), βˆ€X3 ∈ f (f (f X2)), ((βˆ€X4 ∈ binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…, equip (Sing X3) X4) ∧ (((βˆ€X4 ∈ f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)), (βˆ… = X3)) ∧ ((exactly4 βˆ… β†’ (βˆ€X4 : set, (Β¬ p (f (ordsucc X2))) β†’ p X4)) β†’ (βˆƒX4 ∈ X2, TransSet βˆ…))) β†’ (βˆƒX4 : set, ((X4 βŠ† f X2) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))))) ∧ ((βˆƒX2 : set, ((X2 βŠ† Sing (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ (βˆƒX3 : set, ((βˆƒX4 : set, (((binop_on X3 (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ X6) ∧ (((p X3 ∧ set_of_pairs (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ ((Β¬ p (f (setminus (f X4) X2))) ∧ ((Β¬ exactly2 X3) ∧ (Β¬ p X2)))) β†’ ((atleast4 X4 ∧ atleast2 (f βˆ…)) ∧ (exactly5 X4 ∧ (p X3 ∧ (((atleast2 βˆ… ∧ (p X2 β†’ (Β¬ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) β†’ (((p X4 β†’ (exactly4 (f X4) ∧ exactly3 (f X3))) ∧ p X4) ∧ p X4)) β†’ (Β¬ atleast4 X3))))))) β†’ ((ordinal X3 ∧ (p X3 β†’ (p (f X4) ∧ ((Β¬ bij X4 X3 (Ξ»X5 : set β‡’ X4)) ∧ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ (Β¬ nat_p (V_ X4)))) ∧ (((((((Β¬ (βˆ… = f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) β†’ exactly3 (f (ordsucc (f X3))) β†’ (Β¬ p (f X3))) ∧ (Β¬ exactly3 X2)) β†’ (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…) = X4)) β†’ (Β¬ exactly4 X2)) ∧ (Β¬ equip X2 βˆ…)) β†’ ((Β¬ atleast2 (f X3)) β†’ atleast2 X3) β†’ ((p (f X4) β†’ (Β¬ p X2)) β†’ (Β¬ PNoLt X2 (Ξ»X5 : set β‡’ ((Β¬ p X5) ∧ p X5)) X3 (Ξ»X5 : set β‡’ (Β¬ exactly3 X5)))) β†’ ordinal X4 β†’ (Β¬ atleast2 X4)))) ∧ (Β¬ p βˆ…))) ∧ (Β¬ p X2))))) ∧ (βˆƒX2 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…), (βˆ€X3 βŠ† binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…), ((βˆ€X4 βŠ† X3, ((p βˆ… ∧ (((((p X2 ∧ (Β¬ p X4)) ∧ (p X4 β†’ ((((Β¬ p X3) ∧ (p (add_nat X4 X4) β†’ (Β¬ exactly5 X4) β†’ (Β¬ p βˆ…))) β†’ exactly4 X3) ∧ p X3))) ∧ ((Β¬ p (f X3)) ∧ atleast2 (PSNo βˆ… (Ξ»X5 : set β‡’ (exactly5 X3 ∧ p X3))))) β†’ ((((Β¬ p X4) β†’ ((((Β¬ p X4) β†’ exactly2 (f X4)) β†’ exactly4 (f X4)) ∧ exactly4 X2)) β†’ p X4) ∧ ((((exactly3 X3 β†’ (Β¬ p X3)) ∧ ((((p X4 β†’ (((p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ ((Β¬ exactly4 (f (Inj1 X4))) ∧ exactly5 βˆ…)) ∧ (Β¬ exactly4 X2)) ∧ ((Β¬ p X4) β†’ ((Β¬ p X3) ∧ (Β¬ p X3))))) ∧ (((p X3 ∧ (Β¬ p X3)) β†’ (((Β¬ p (f X2)) ∧ (f (mul_nat X4 (⋃ X4)) ∈ X3)) ∧ ((exactly3 X3 β†’ (Β¬ p (V_ X3))) ∧ (Β¬ exactly2 X2))) β†’ ((Β¬ atleast2 X3) ∧ ((Β¬ p X4) ∧ (((Β¬ p X4) β†’ (Β¬ atleast2 X3)) ∧ ((Β¬ ordinal (f X4)) ∧ (((Β¬ p X3) β†’ ordinal X3 β†’ p X3 β†’ (((atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) β†’ (Β¬ p X2)) β†’ p X3) ∧ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ exactly4 (𝒫 βˆ…) β†’ atleast4 X5))) β†’ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))))) β†’ (Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) ∧ ((Β¬ set_of_pairs X4) ∧ ((Β¬ exactly3 X2) β†’ exactly5 X2 β†’ (exactly4 X4 β†’ (Β¬ p (binintersect X2 βˆ…))) β†’ atleast2 (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))))) β†’ ((Β¬ p X4) β†’ (set_of_pairs βˆ… ∧ (Β¬ atleast5 X3))) β†’ p (f X3))) β†’ p X4) ∧ (nat_p βˆ… β†’ atleast2 X3)))) ∧ p X4)) ∧ ordinal (f X2)) β†’ (((Β¬ set_of_pairs X2) β†’ (SNo X3 ∧ atleast6 X4)) ∧ (((atleast5 X4 β†’ p X4 β†’ ((((Β¬ p X3) β†’ (((Β¬ exactly5 (⋃ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ exactly1of2 (setsum_p X3 β†’ ((Β¬ atleast5 X4) β†’ (Β¬ atleast4 (Sing (f X2)))) β†’ p (ordsucc X4)) (Β¬ p X3))) ∧ (Β¬ p βˆ…)) β†’ (Β¬ atleast3 X3)) β†’ stricttotalorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ p (f X2))) ∧ ((Β¬ nat_p X4) ∧ ((Β¬ p X3) ∧ ((Β¬ p X3) β†’ (Β¬ nat_p (ap X4 X3))))))) β†’ TransSet (proj1 X3) β†’ ((p X4 ∧ TransSet X2) ∧ (((((p (UPair (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) X4) ∧ (((Β¬ exactly4 (f X3)) β†’ (Β¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ (Β¬ TransSet X3))) β†’ p (f X4)) β†’ (Β¬ atleast5 X3)) β†’ (((Β¬ p X3) ∧ ((exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ ((((p (f X3) ∧ (Β¬ p (f (f X2)))) ∧ ((Β¬ p (f (setsum X3 X3))) ∧ ((p X3 ∧ p X3) ∧ p X4))) ∧ p (f X2)) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))) β†’ atleast3 X3 β†’ (((((nat_p X4 β†’ (Β¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ (atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) β†’ (p X4 ∧ (Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))) β†’ p X4) ∧ (Β¬ p X3)) ∧ (Β¬ p X2)) β†’ (((X4 ∈ X3) ∧ p βˆ…) ∧ (Β¬ atleast5 (Sing X3))))) ∧ SNo X3)) β†’ (Β¬ p X3) β†’ (Β¬ TransSet X3))) β†’ atleast6 (SNoElts_ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p X4)) β†’ (Β¬ p (f βˆ…))))) ∧ p (f X2)) β†’ p X3) β†’ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMNYKr8oHLgXtcxXEsPkAmJJc18DHecCyAg)
βˆ€X2 βŠ† setsum (Inj1 (f (Sing (f (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))) (SetAdjoin (f (f (PSNo (In_rec_i (Ξ»X3 : set β‡’ Ξ»X4 : set β†’ set β‡’ βˆ…) (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) (Ξ»X3 : set β‡’ (Β¬ atleast5 X3) β†’ (βˆƒX4 : set, (βˆƒX5 ∈ X3, exactly3 (f X4)) β†’ (((βˆ€X5 : set, ((((atleast2 (f βˆ…) ∧ ((exactly3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ ((p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ (Β¬ exactly3 X5)) β†’ atleast4 X5))) β†’ TransSet (f X4)) ∧ ((Β¬ setsum_p (f X4)) β†’ (p βˆ… ∧ exactly5 X3) β†’ ((Β¬ exactly4 X4) ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))))) ∧ exactly2 X5) β†’ (atleast5 (f X4) ∧ (((Β¬ exactly3 X4) β†’ SNo X5) ∧ (Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))) ∧ (βˆ€X5 ∈ βˆ…, (Β¬ p X5))) ∧ (βˆ€X5 : set, (Β¬ ordinal (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))))))) (f (f (f (f (setprod (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))))))), (((atleast6 X2 β†’ (setsum_p X2 ∧ (βˆƒX3 : set, set_of_pairs (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) ∧ ((Β¬ atleast4 (f (f X2))) β†’ ((βˆ€X3 βŠ† X2, βˆƒX4 ∈ binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…, (Β¬ p X4)) ∧ (βˆƒX3 : set, (((βˆ€X4 : set, (Β¬ p X4) β†’ (Β¬ ordinal X2)) ∧ (Β¬ atleastp (f X2) βˆ…)) ∧ (βˆƒX4 : set, ((Β¬ exactly2 X3) ∧ p X3))))))) β†’ p (f (f X2))) β†’ (βˆƒX3 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…), (βˆƒX4 ∈ X2, ((Β¬ atleast6 X4) ∧ (Β¬ p (f X3)))) β†’ (Β¬ p X3))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMGo9rfSRQpgBVgVA3Fn6SPkeVefrvet5Pd)
βˆƒX2 : set, ((βˆƒX3 : set, ((X3 βŠ† X2) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ (βˆƒX3 ∈ X2, βˆ€X4 : set, (exactly2 X2 β†’ p X4) β†’ ((((((Β¬ ordinal X3) β†’ atleast3 X4) ∧ atleast4 βˆ…) β†’ (Β¬ exactly3 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ ((((exactly2 X2 β†’ ((((Β¬ ordinal X3) β†’ p (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ atleast3 X4) β†’ (Β¬ exactly5 (binrep X3 X3))) β†’ atleast4 X4) β†’ p (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) β†’ (ordinal X4 ∧ ((p (f (f X2)) β†’ (p X4 ∧ (((Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ ((Β¬ nat_p X2) β†’ p X3)) β†’ (Β¬ p X4) β†’ atleast5 X4))) ∧ (((((p X4 ∧ ((Β¬ p X4) ∧ (p X3 ∧ p βˆ…))) β†’ exactly2 X4 β†’ (SNoLe X2 X2 ∧ setsum_p X4)) ∧ (((((((X4 ∈ X2) ∧ (Β¬ p X4)) β†’ (((((Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((p βˆ… β†’ p X5) ∧ (exactly4 X6 ∧ ((atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) ∧ ((Β¬ exactly5 X5) β†’ (p X6 ∧ atleast6 X6) β†’ ((((((p X2 β†’ p X6) ∧ ((Β¬ p X2) ∧ ((((((Β¬ SNo_ X5 X5) β†’ ((p βˆ… β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ ((((Β¬ nat_p βˆ…) ∧ nat_p X5) ∧ ((Β¬ exactly3 X6) β†’ ((Β¬ p X5) ∧ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ (((((Β¬ exactly5 X6) ∧ (Β¬ atleast2 (f X5))) β†’ (((exactly5 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p X5)) β†’ (Β¬ p X3)) ∧ (Β¬ p X5))) β†’ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ atleast4 X5)) ∧ ((Β¬ p X6) β†’ ((p X5 β†’ (Β¬ p X6) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ (TransSet (f βˆ…) ∧ ((Β¬ ordinal X3) β†’ (((TransSet X6 β†’ stricttotalorder_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ (((Β¬ p X2) β†’ ((p X8 ∧ (((exactly3 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ p X6) ∧ ((p X7 ∧ (Β¬ atleast4 X2)) β†’ (((Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ atleast5 X7) ∧ (Β¬ ordinal X8)))) β†’ (Β¬ exactly4 X2) β†’ ((((ordinal X8 β†’ (Β¬ setsum_p X7)) β†’ (((p X5 ∧ (exactly5 X7 β†’ (((Β¬ exactly3 X7) β†’ (((Β¬ p X8) β†’ p X2) ∧ (((atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ ((((((Β¬ exactly4 X7) β†’ atleast5 X7) ∧ p X7) β†’ (p X3 ∧ p X4)) ∧ (atleast6 X7 ∧ p βˆ…)) β†’ p X4)) β†’ ((Β¬ p X8) ∧ ((eqreln_i (Ξ»X9 : set β‡’ Ξ»X10 : set β‡’ (Β¬ nat_p X9)) ∧ p X6) β†’ (Β¬ p (f X8))))) β†’ (((Β¬ p βˆ…) ∧ (Β¬ p X7)) ∧ (p X8 ∧ (Β¬ TransSet X4)))))) ∧ ((((((Β¬ ordinal X2) β†’ ((((Β¬ PNo_downc (Ξ»X9 : set β‡’ Ξ»X10 : set β†’ prop β‡’ exactly4 (f X9)) X7 (Ξ»X9 : set β‡’ ((p X9 ∧ ((Β¬ p X2) β†’ (p X3 ∧ (p (ReplSep X6 (Ξ»X10 : set β‡’ (Β¬ irreflexive_i (Ξ»X11 : set β‡’ Ξ»X12 : set β‡’ exactly3 (Inj0 X9)))) (Ξ»X10 : set β‡’ βˆ…)) β†’ ((Β¬ exactly5 βˆ…) ∧ (atleast3 (Inj1 X6) β†’ atleast2 X4)))) β†’ PNoLe X4 (Ξ»X10 : set β‡’ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) (Ξ»X10 : set β‡’ p X9) β†’ setsum_p X8)) ∧ ((Β¬ p X6) β†’ (nat_p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ (Β¬ nat_p (ap (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) X8))))))) β†’ atleast5 (f X8)) β†’ p X6) β†’ (Β¬ p X5)) β†’ exactly2 (Sing X8)) β†’ (atleast3 X8 ∧ (p X8 β†’ (((Β¬ p X2) β†’ (Β¬ (X2 ∈ X7)) β†’ ((p (f βˆ…) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ p X7)) ∧ (Β¬ nat_p X8))))) β†’ ((Β¬ p X7) ∧ p X8) β†’ p X8 β†’ p X8) β†’ ((Β¬ p X7) ∧ ((Β¬ p X6) β†’ ((Β¬ p X7) ∧ ((((((X8 ∈ X3) ∧ (Β¬ TransSet X8)) β†’ p X8 β†’ irreflexive_i (Ξ»X9 : set β‡’ Ξ»X10 : set β‡’ atleast2 X10)) ∧ ((p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) β†’ (Β¬ p X7)) ∧ ((Β¬ TransSet X7) ∧ (((Β¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ p X6)) ∧ atleast5 X8)))) β†’ ((Β¬ p X7) ∧ ((p (f X8) β†’ (Β¬ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (((Β¬ p βˆ…) β†’ (Β¬ p (SNoLev βˆ…))) β†’ atleast3 (f X2)) β†’ ((Β¬ (ordsucc (f (proj0 X2)) βŠ† X7)) ∧ (Β¬ atleast3 X2)) β†’ ((((X7 ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) β†’ (((Β¬ atleast5 X2) ∧ ((Β¬ reflexive_i (Ξ»X9 : set β‡’ Ξ»X10 : set β‡’ (Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) ∧ p (f X7))) ∧ (Β¬ atleast3 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))))) β†’ (p X7 ∧ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (p X7 β†’ ((Β¬ p X3) β†’ (Β¬ exactly3 X7)) β†’ (Β¬ atleast3 X7))) β†’ atleastp βˆ… X8) ∧ ordinal X8))) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) β†’ ((Β¬ atleast3 X8) ∧ (atleast2 X8 ∧ p X7))))) ∧ (p (Unj X7) ∧ p X6))) β†’ (Β¬ p X5))) β†’ (Β¬ nat_p X8)) ∧ p X8)) ∧ (Β¬ p X8)) ∧ (Β¬ p X7)))) ∧ ((Β¬ atleast4 X8) β†’ (Β¬ atleast6 X6) β†’ (Β¬ PNo_downc (Ξ»X9 : set β‡’ Ξ»X10 : set β†’ prop β‡’ TransSet X3) X4 (Ξ»X9 : set β‡’ p X8)) β†’ p X8))) ∧ atleast5 X7) β†’ (atleast5 X8 ∧ ((Β¬ SNoLt βˆ… X7) ∧ (Β¬ SNo (If_i ((((Β¬ TransSet (binunion βˆ… (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) β†’ set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (Β¬ TransSet X8)) β†’ ((((((((p X7 β†’ (Β¬ p βˆ…) β†’ (((((((Β¬ ordinal βˆ…) β†’ exactly2 X2) ∧ equip (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) X3) β†’ (Β¬ TransSet X7)) ∧ ((Β¬ p X8) ∧ (TransSet X7 β†’ (((Β¬ exactly4 X7) ∧ ((((Β¬ nat_p X8) β†’ (Β¬ p (SetAdjoin (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) X7))) ∧ ((Β¬ p βˆ…) β†’ TransSet X6)) β†’ (Β¬ exactly3 X8) β†’ (p X7 ∧ (Β¬ setsum_p βˆ…)))) β†’ (p X7 β†’ p X4) β†’ (atleast3 X7 ∧ (Β¬ exactly4 X8))) β†’ (Β¬ tuple_p βˆ… X7)))) β†’ ((Β¬ p X8) ∧ ((((SNo X7 β†’ (Β¬ exactly3 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ ((Β¬ atleast5 X7) β†’ exactly2 X8 β†’ ((Β¬ nat_p (𝒫 X2)) ∧ (p X8 β†’ ((Β¬ exactly4 X2) β†’ ((Β¬ p X5) ∧ linear_i (Ξ»X9 : set β‡’ Ξ»X10 : set β‡’ (Β¬ p X5) β†’ (p X9 β†’ ((((Β¬ p X9) β†’ (Β¬ p X6)) β†’ (Β¬ nat_p X5)) ∧ ((p X10 ∧ (Β¬ p X3)) ∧ ((Β¬ p X10) ∧ TransSet X2)))) β†’ ((binop_on X3 (Ξ»X11 : set β‡’ Ξ»X12 : set β‡’ binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ (((Β¬ p X6) ∧ ((Β¬ p X9) ∧ p X5)) ∧ p X9)) ∧ (((p (Unj X9) ∧ p X9) ∧ ((((((Β¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ ((((((Β¬ p X4) ∧ (Β¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) β†’ nat_p X10) ∧ ((Β¬ atleast3 X9) β†’ (Β¬ atleast2 X9))) ∧ (Β¬ ordinal X9)) ∧ p X9) β†’ p X10 β†’ p X3 β†’ (p X9 ∧ p (ordsucc X9))) β†’ (((Β¬ p X3) ∧ p X9) ∧ nat_p X10)) β†’ (Β¬ SNo_ X9 X3)) β†’ atleast5 X10) ∧ (Β¬ atleast5 (Inj1 X10)))) ∧ (stricttotalorder_i (Ξ»X11 : set β‡’ Ξ»X12 : set β‡’ (Β¬ p X10)) ∧ (((Β¬ atleast2 X6) β†’ TransSet X10) ∧ TransSet X9)))) β†’ (Β¬ p (SNoLev X9)))) β†’ p X8) β†’ ((Β¬ SNo_ X4 X8) ∧ atleast5 X2) β†’ ((Β¬ p X2) ∧ ((((p X3 β†’ p X5) β†’ atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ… ∈ X7) β†’ (Β¬ exactly2 X6)) β†’ (Β¬ atleast3 X8))))))) β†’ (Β¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ ((Β¬ ordinal βˆ…) ∧ (((atleast4 (f X6) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ exactly3 (V_ X7)) ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))))))) ∧ (Β¬ TransSet X8))) ∧ ((((Β¬ p X7) ∧ p X2) β†’ (Β¬ p X7) β†’ (Β¬ TransSet X5)) ∧ (exactly2 X2 β†’ (p X7 ∧ (((Β¬ atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ exactly3 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ p X7) ∧ set_of_pairs X7))))) ∧ (Β¬ p X2)) β†’ (((Β¬ exactly5 X2) β†’ exactly4 X7) ∧ atleast6 X3)) β†’ p X8) β†’ (p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ ((Β¬ p X8) ∧ (Β¬ p X7)) β†’ atleast5 X8) ∧ ((Β¬ p X8) ∧ ((Β¬ TransSet X7) β†’ (Β¬ TransSet X8)))) ∧ p X5) β†’ (Β¬ exactly3 (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) X8 X7)))))) ∧ (X5 ∈ βˆ…)) ∧ ((Β¬ setsum_p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ (f (Inj0 X5) ∈ X2)))))))) β†’ (Β¬ atleast2 X6)) β†’ (p X5 ∧ p X6) β†’ ((Β¬ atleast5 X5) β†’ exactly5 βˆ…) β†’ ((TransSet X5 β†’ p X5) ∧ atleast3 βˆ…) β†’ atleast4 X5) β†’ (Β¬ exactly5 (famunion (Inj0 (f X5)) (Ξ»X7 : set β‡’ X7)))) β†’ exactly5 X6) β†’ TransSet X4) β†’ ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (((Β¬ p X4) ∧ (TransSet X6 ∧ (Β¬ p X5))) β†’ (Β¬ ordinal X6)))) ∧ (((((Β¬ p (f X3)) β†’ (Β¬ exactly4 X6)) β†’ p X6) ∧ (((Β¬ p X5) β†’ (Β¬ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ p X6)))) β†’ (Β¬ TransSet X5))) ∧ (((Β¬ p X6) ∧ (Β¬ p X3)) ∧ ((set_of_pairs X6 β†’ p X5) β†’ ((Β¬ p X4) ∧ (ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) β†’ p X5 β†’ (Β¬ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ p X4))))))))))) β†’ p X3) β†’ (set_of_pairs X5 β†’ exactly4 X5) β†’ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ p X3) β†’ ((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ p X5)) ∧ ((((((Β¬ p (setexp X3 X6)) ∧ ((Β¬ equip X5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ p X7)) ∧ (((Β¬ atleast4 (f X6)) ∧ (p X5 β†’ (Β¬ p X5))) ∧ ((((Β¬ exactly2 X5) β†’ atleast6 X6 β†’ ((((Β¬ p X6) β†’ exactly3 X5) ∧ (((Β¬ p X3) β†’ p X5) ∧ ((p (UPair X6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ (atleast2 X2 ∧ (((Β¬ atleast2 X6) β†’ atleast2 X5) ∧ (((Β¬ p (f X5)) ∧ (p X5 ∧ (Β¬ p X4))) ∧ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))) β†’ ((Β¬ exactly2 X4) ∧ (((Β¬ p (Inj1 X2)) ∧ ((Β¬ p X5) β†’ ((Β¬ p (f X6)) ∧ (p (f X5) ∧ ((Β¬ nat_p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ ((Β¬ atleast5 βˆ…) ∧ (p βˆ… β†’ ((X3 ∈ binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ ((Β¬ p X6) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))))))))) ∧ (((Β¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ p βˆ…)))))) ∧ (Β¬ exactly5 βˆ…))) β†’ (p X2 ∧ atleast6 X3)) ∧ ((exactly1of2 ((((Β¬ exactly3 X5) β†’ (Β¬ p X3)) β†’ ((((Β¬ p X4) β†’ (Β¬ p βˆ…)) β†’ (Β¬ atleast4 X4)) β†’ (Β¬ p X3)) β†’ p X5 β†’ (Β¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ p X4) ∧ (Β¬ p (f X6))) (Β¬ p X5) ∧ (Β¬ exactly4 X6)) β†’ atleast2 (𝒫 X6))))))) ∧ ((((Β¬ p (f βˆ…)) ∧ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) ∧ ((Β¬ atleast5 X5) ∧ atleast4 X6))) ∧ (Β¬ p X6)) ∧ ((Β¬ TransSet (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ (TransSet (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) β†’ (Β¬ p X6))))) β†’ (Β¬ per_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ p X7))) β†’ p X4 β†’ ((p X5 β†’ (Β¬ setsum_p X5)) ∧ (((Β¬ p βˆ…) β†’ p X5) ∧ ((ordinal X2 ∧ ((p X3 β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (((((Β¬ setsum_p X3) β†’ atleast3 (Inj0 X6)) ∧ (nat_p X6 ∧ (((nat_p X5 ∧ ((((p (ReplSep X6 (Ξ»X7 : set β‡’ PNoLt X7 (Ξ»X8 : set β‡’ (((Β¬ p X2) β†’ p X7) ∧ (Β¬ ordinal X7))) βˆ… (Ξ»X8 : set β‡’ ((((((Β¬ SNo_ (f X3) X7) ∧ (((Β¬ exactly3 (f X5)) β†’ ((Β¬ p X2) ∧ (Β¬ exactly3 X8))) ∧ (((Β¬ atleast5 X7) β†’ (Β¬ ordinal X4)) β†’ (Β¬ p X8) β†’ (exactly2 X7 ∧ (Β¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))))) β†’ (Β¬ tuple_p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (SNoElts_ X4))) β†’ (Β¬ ordinal X5)) ∧ (((Β¬ p X3) β†’ (Β¬ setsum_p X5)) β†’ (p X2 β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ (Β¬ p X8))) ∧ atleast3 X2) β†’ atleast3 X7 β†’ atleast4 X7)) (Ξ»X7 : set β‡’ X6)) β†’ (Β¬ atleast3 X6) β†’ ((Β¬ p (setminus X4 X5)) ∧ atleast5 X5)) ∧ ((Β¬ p X2) β†’ (Β¬ atleast4 X5))) β†’ ((Β¬ atleast4 X6) ∧ (nat_p X2 ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ (Β¬ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (((Β¬ ordinal X5) β†’ (p X2 ∧ ((((atleast6 X6 β†’ atleast2 βˆ…) ∧ ((Β¬ ordinal X7) ∧ ((((Β¬ p X8) ∧ (Β¬ p X4)) β†’ p X3) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) β†’ (((Β¬ atleast5 X8) ∧ (Β¬ p X5)) ∧ (setsum_p X5 β†’ (Β¬ p X5) β†’ (((Β¬ p (𝒫 X7)) β†’ nat_p X8) ∧ ((((exactly1of2 ((Β¬ p X6) β†’ ordinal βˆ…) (setsum_p X5) β†’ p X8) ∧ (Β¬ exactly3 X8)) ∧ ((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ setsum_p X8)) β†’ p (f X8)))))) ∧ (((Β¬ p X7) ∧ ((exactly2 X7 ∧ (TransSet X7 β†’ ((Β¬ p X7) ∧ ((Β¬ atleast4 X7) β†’ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))))) β†’ (p X8 ∧ (Β¬ p X8)) β†’ (Β¬ ordinal βˆ…) β†’ irreflexive_i (Ξ»X9 : set β‡’ Ξ»X10 : set β‡’ (Β¬ exactly4 X10)))) ∧ (Β¬ p X8)))) β†’ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ atleast6 (f βˆ…))) β†’ (Β¬ p X7)))))))) ∧ (Β¬ p βˆ…))) ∧ ((Β¬ TransSet X3) β†’ p X5)) ∧ ((Β¬ p X4) ∧ (p X5 β†’ (Β¬ exactly2 X5)))))) ∧ (Β¬ atleast2 βˆ…)) ∧ (Β¬ atleast5 X6)))) ∧ ((Β¬ p X4) ∧ p βˆ…)))) β†’ p X3 β†’ (((((Β¬ p X2) β†’ (atleast3 X6 ∧ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ (p X5 ∧ (TransSet βˆ… ∧ ((Β¬ (f X5 ∈ X3)) β†’ atleast3 X5)))))) ∧ (Β¬ p X5)) β†’ (((p (f X5) β†’ ((ordinal X6 ∧ p X6) ∧ ((Β¬ (X6 ∈ X4)) ∧ ((p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) β†’ p X5) β†’ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))))) β†’ p X5) ∧ (Β¬ p X5))) ∧ (Β¬ p X2))) ∧ exactly4 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))))) ∧ atleast3 X3))))) β†’ (p X4 ∧ (p X4 β†’ ((Β¬ p X4) ∧ (((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ (((((Β¬ SNo_ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) X3) β†’ p X4) β†’ ((Β¬ p (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ atleast4 X3)) β†’ (Β¬ p X3) β†’ (((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ set_of_pairs X3)) ∧ p X4)) ∧ (Β¬ p (f X4))) β†’ TransSet βˆ…) ∧ (p (SNoElts_ X3) β†’ (Β¬ TransSet X3)))))) β†’ (p βˆ… β†’ (p X4 ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ p X4) ∧ (nat_p X2 β†’ (p (mul_nat (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) X2) ∧ PNoEq_ X2 (Ξ»X5 : set β‡’ (Β¬ exactly5 X4)) (Ξ»X5 : set β‡’ (Β¬ p X3))) β†’ (nat_p X4 β†’ exactly4 X2) β†’ atleast4 X3)) ∧ (Β¬ p X4)) ∧ (Β¬ p X4))) ∧ (p (f X4) ∧ (Β¬ p (f X4)))) ∧ exactly2 X4) β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ ((((((((p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) β†’ ((Β¬ atleast2 X3) β†’ ((Β¬ p X2) β†’ (Β¬ p X3)) β†’ (((Β¬ exactly4 X4) ∧ p X3) β†’ equip X2 X2) β†’ exactly5 X2) β†’ (exactly5 (Sing X4) ∧ ((Β¬ atleast3 X4) β†’ ((Β¬ p X4) ∧ TransSet X4)))) β†’ (((Β¬ p X3) β†’ p X2) ∧ ((p X3 ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ ((set_of_pairs X4 β†’ p X3) ∧ (atleast3 (f βˆ…) ∧ TransSet X3))))) β†’ SNo_ X4 X2) β†’ (Β¬ p X4) β†’ (Β¬ exactly4 X3)) β†’ (Β¬ exactly3 X3)) ∧ ((atleast4 X4 ∧ ((Β¬ p X4) ∧ (((p X2 β†’ ((Β¬ exactly3 X3) ∧ (((Β¬ setsum_p X2) ∧ p X2) ∧ (((Β¬ exactly5 X2) ∧ SNo X2) ∧ p X3)))) β†’ (Β¬ exactly5 (f X3))) ∧ p X3))) β†’ exactly3 X3)) ∧ atleast5 βˆ…) β†’ (Β¬ p X4)) β†’ ((p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ ((TransSet X3 β†’ p (f βˆ…)) ∧ (p X4 ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) β†’ p X3) ∧ (Β¬ setsum_p X3)))) β†’ (Β¬ p X3)) ∧ (Β¬ p X2))))) β†’ p (Sing X4))) β†’ p X4 β†’ (Β¬ TransSet X4)) β†’ ((Β¬ ordinal (setexp X4 X4)) ∧ ((Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ (p (f X4) ∧ ((((Β¬ p X2) β†’ (p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) β†’ (((Β¬ atleast5 X3) β†’ ordinal X2) ∧ ((((Β¬ p X3) ∧ (TransSet X2 β†’ (Β¬ atleast6 (f (⋃ (f X4)))))) ∧ (Β¬ p X2)) ∧ (p X4 β†’ atleast5 X4)))) β†’ (Β¬ p X3) β†’ ((Β¬ p βˆ…) ∧ (Β¬ exactly2 (f X4)))) ∧ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) β†’ (((Β¬ p X4) β†’ (((((Β¬ tuple_p X3 (f X4)) ∧ p X3) ∧ (p (Sing βˆ…) β†’ ((Β¬ p X4) ∧ p (SNoLev (f X3))))) β†’ ((Β¬ p (f X3)) ∧ p X3) β†’ (((Β¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ exactly4 X3)) ∧ ((Β¬ p X4) β†’ (Β¬ p X3) β†’ (Β¬ p (Sing X4)) β†’ atleast6 (f (f X3)) β†’ (((Β¬ p X4) ∧ ((((Β¬ p X4) ∧ (Β¬ p (f X3))) ∧ (((Β¬ p X3) β†’ (((Β¬ exactly2 X2) ∧ atleast3 X3) ∧ atleast4 X4) β†’ p X2) β†’ ((Β¬ p X4) β†’ (Β¬ ordinal X4)) β†’ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ (Β¬ SNo X2)))) ∧ p X3)) ∧ ((Β¬ p X3) ∧ ((Β¬ p (f X4)) ∧ p X4)))))) β†’ ((((((Β¬ exactly3 X2) β†’ ((Β¬ exactly5 X3) ∧ ((Β¬ p X3) ∧ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ ((((SNo_ (f X3) βˆ… β†’ ((Β¬ p X2) ∧ (nat_p X4 β†’ ((Β¬ p (f X3)) ∧ exactly3 (f (setprod X2 X3))) β†’ ((Β¬ atleast6 (f X3)) ∧ ((Β¬ exactly5 X3) ∧ ((p X4 ∧ p X2) β†’ exactly3 (f X3)))) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) β†’ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ atleast2 X4)))) ∧ (((p X2 ∧ ((p βˆ… β†’ (ordinal X2 ∧ ((Β¬ p X4) β†’ (((Β¬ p βˆ…) β†’ (Β¬ ordinal X3) β†’ ((Β¬ p X4) β†’ (Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) β†’ (p X3 ∧ (exactly4 X3 β†’ (p X3 ∧ ((((Β¬ p X4) β†’ (atleast4 (f (f X4)) ∧ (Β¬ atleast3 βˆ…))) β†’ (p (f X3) ∧ ((p X3 β†’ p X3) β†’ (Β¬ atleast3 βˆ…))) β†’ atleast2 X2) β†’ (exactly5 (f βˆ…) ∧ (Β¬ p X2)))))) β†’ ((Β¬ p βˆ…) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ p X4)))) β†’ (Β¬ (X2 ∈ X3)))) β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ (Β¬ exactly4 (f X2)) β†’ p X3 β†’ (Β¬ p X2)) ∧ (Β¬ p X4))) ∧ p X4) ∧ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ PNoLt_ X2 (Ξ»X5 : set β‡’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) β†’ atleast5 X5) (Ξ»X5 : set β‡’ atleast4 X5 β†’ (Β¬ p X4) β†’ atleast5 (f X4) β†’ (Β¬ exactly2 X4))) ∧ nat_p X3))) β†’ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (Β¬ p (f βˆ…))))) ∧ p X2))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMEu9JvxMvS9et7o1warEBeyvAQKgmUZ3Ee)
((p (f βˆ…) β†’ ((βˆ€X2 βŠ† binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…, ((βˆƒX3 ∈ f (f X2), (Β¬ p X2)) β†’ (βˆ€X3 βŠ† X2, ((βˆ€X4 ∈ V_ X3, (Β¬ p X4)) ∧ (βˆ€X4 βŠ† f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)), (exactly4 βˆ… ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ (Β¬ ordinal X3) β†’ p X4)))))) β†’ (βˆ€X3 : set, (βˆ€X4 : set, (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) β†’ (βˆƒX4 ∈ f X2, ((Β¬ p (f X2)) ∧ (p X3 ∧ (p (f X3) ∧ (((((atleast2 X2 ∧ ((p X2 β†’ ((((Β¬ p X4) β†’ (((Β¬ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ… ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (((p X4 β†’ p X2) β†’ ((((p X4 β†’ ordinal (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) β†’ (((Β¬ atleast4 X3) β†’ (((p X4 β†’ ((Β¬ p X4) ∧ ((eqreln_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ p X2) ∧ (Β¬ ordinal X3)) β†’ (p X4 ∧ (Β¬ p X4))))) ∧ (Β¬ equip (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) X4)) ∧ (p X2 ∧ (Β¬ setsum_p X4)))) ∧ (exactly2 (f X2) β†’ (p X4 ∧ ((((Β¬ p (Inj1 X3)) ∧ (Β¬ p X3)) ∧ ((atleast5 X3 β†’ (((Β¬ TransSet (f X2)) ∧ (Β¬ p X4)) ∧ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) β†’ (Β¬ p βˆ…))) β†’ p X2))))) β†’ atleast5 (f (f X2))) ∧ p X3) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) β†’ ((Β¬ SNo X3) ∧ (p X2 β†’ p X4))))) ∧ (Β¬ p X2))) β†’ (((((Β¬ p X2) β†’ (atleast4 X3 ∧ (((p X2 β†’ (Β¬ atleast4 X4) β†’ (Β¬ p (ordsucc X4))) ∧ p X3) β†’ p X4)) β†’ ((Β¬ p X3) β†’ ((exactly2 (f X3) β†’ p X3) ∧ ((Β¬ atleast4 X3) ∧ (exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ ((((Β¬ exactly3 X4) ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (((atleast6 βˆ… ∧ (transitive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ordinal X5 β†’ (p X3 ∧ ((Β¬ p X6) ∧ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) β†’ (((Β¬ nat_p X4) ∧ ((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ (p X5 β†’ p X5 β†’ (Β¬ p X6))) β†’ p X5) β†’ (exactly4 X2 ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (((Β¬ exactly3 X6) ∧ (((Β¬ p βˆ…) ∧ ((exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ ((Β¬ p X5) ∧ (atleast4 X5 β†’ exactly5 X2)) β†’ ((Β¬ atleastp X5 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ ((((SNo X2 ∧ ((atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) β†’ p X3) β†’ (Β¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ (p X6 ∧ atleast3 X5))) β†’ p X5) β†’ (Β¬ p X2)) ∧ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))) ∧ (((p X5 ∧ nat_p X5) ∧ ((atleast2 X5 ∧ atleast2 X2) ∧ (Β¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) β†’ (Β¬ tuple_p X3 X6)))) β†’ ((p X6 ∧ p X5) ∧ (Β¬ ordinal X5))))))) β†’ p X5) β†’ (Β¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))))) ∧ ((p X4 β†’ ((p (f X3) ∧ (((((p X3 β†’ p X4) β†’ ((p X2 β†’ p (lam (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (Ξ»X5 : set β‡’ X5)) β†’ ((Β¬ atleast2 βˆ…) ∧ (Β¬ atleast2 X3))) ∧ atleast4 X4)) ∧ ((p X2 ∧ (((Β¬ p X2) ∧ (p (f X2) ∧ SNo X3)) ∧ (((((p (⋃ X4) ∧ (((((Β¬ p X4) β†’ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ (setsum_p X2 ∧ ((((((Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p (f X3)) β†’ (p X3 ∧ set_of_pairs (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ (Β¬ exactly5 (setminus X4 X4))) β†’ (Β¬ p (f X3))) ∧ p βˆ…) ∧ (Β¬ SNo (f X4))))) ∧ (Β¬ exactly3 X2)) β†’ ((((atleast2 X3 ∧ (((p X2 ∧ p X4) β†’ exactly3 (f X4)) ∧ (Β¬ atleast2 X2))) ∧ (((Β¬ p X3) ∧ (((Β¬ atleast5 (f X4)) β†’ ((Β¬ p X3) ∧ (((p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ p X2) ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ (Β¬ atleast4 X3))) β†’ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ (((((Β¬ setsum_p X4) ∧ p X2) ∧ (((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ (Β¬ p βˆ…)) ∧ (atleastp (f X2) βˆ… ∧ (Β¬ p X3)))) β†’ ((Β¬ p X4) ∧ ((Β¬ p X2) β†’ ordinal X2))) ∧ p X4))) β†’ ((nat_p βˆ… ∧ ((Β¬ (X4 = f X4)) ∧ ((Β¬ p X4) ∧ ((((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ (Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ (((Β¬ TransSet (f (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) ∧ atleast3 X4) β†’ ((((Β¬ exactly4 X2) ∧ (Β¬ exactly5 (f X4))) ∧ nat_p X2) ∧ (((((exactly5 X3 β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ p X2) ∧ (TransSet X3 β†’ (Β¬ p X2))) ∧ (ordsucc X2 βŠ† X4)) β†’ atleast6 X3)))) ∧ ((((Β¬ atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast6 X4)) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ (Β¬ p X3)) β†’ (p βˆ… β†’ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (p X4 ∧ (p (f X4) β†’ exactly3 (f X3) β†’ (((ordinal X2 ∧ (Β¬ p X3)) β†’ (Β¬ SNo (f (binintersect (f βˆ…) (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))))) β†’ (Β¬ nat_p X3) β†’ (Β¬ exactly3 X3)) β†’ p X4 β†’ (p βˆ… ∧ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))) β†’ (p X4 ∧ (nat_p X3 β†’ (((Β¬ p X2) β†’ (Β¬ atleast2 X3) β†’ (Β¬ p X4) β†’ exactly3 X4) ∧ p (SNoElts_ X3))))) β†’ (Β¬ atleast6 X3)))))) ∧ atleast3 X3) β†’ (Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ atleast2 X5)))) ∧ (Β¬ atleast5 X4)) ∧ (Β¬ exactly3 (f (f X4)))))) ∧ (Β¬ p X2)) β†’ (Β¬ exactly4 X4)) β†’ ((Β¬ SNo_ X3 X4) ∧ ((Β¬ p X3) ∧ (Β¬ p X3))) β†’ (((Β¬ exactly5 X4) β†’ (exactly2 X4 ∧ ((TransSet X3 β†’ ((Β¬ p X4) β†’ ((((Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (((((Β¬ p βˆ…) ∧ ((((((atleast6 (f X3) ∧ exactly4 X2) ∧ (p X3 β†’ p X3)) β†’ (Β¬ exactly2 X2)) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ p (f X4)) ∧ atleast4 X3) ∧ exactly2 (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ (p (proj0 X2) β†’ p X4) β†’ ((((p X3 β†’ ((setsum_p X2 ∧ (Β¬ p X3)) ∧ ((((Β¬ irreflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((((Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ ((((Β¬ p X5) ∧ (Β¬ p X6)) β†’ atleast5 X5) ∧ (Β¬ atleast6 βˆ…))) β†’ ((Β¬ atleast6 X4) ∧ (((X5 ∈ X6) ∧ (Β¬ p X6)) ∧ p βˆ…))) ∧ (Β¬ atleast6 (⋃ (Inj1 X6)))))) ∧ (exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) β†’ (((p X2 β†’ (Β¬ atleast3 X4)) β†’ (Β¬ atleastp X3 X4)) ∧ (Β¬ (X3 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))) ∧ (exactly2 (f X3) ∧ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ PNoEq_ (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) (Ξ»X5 : set β‡’ (p X5 ∧ binop_on X2 (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ βˆ…)) β†’ (((p X5 β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ ((nat_p X4 β†’ (Β¬ atleast5 X2)) ∧ ((Β¬ atleast6 (f X3)) β†’ (Β¬ exactly2 (f βˆ…))))) ∧ atleast3 X5)) (Ξ»X5 : set β‡’ ((TransSet X3 β†’ (Β¬ atleast2 X2)) ∧ atleast4 X4)))))) ∧ (Β¬ p X3)) β†’ p X4 β†’ atleast4 X4) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ ((Β¬ p X3) ∧ ((Β¬ p X3) ∧ (Β¬ exactly4 X4)))) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ ((atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ p (f (⋃ X4))) ∧ (Β¬ TransSet (Sep2 X2 (Ξ»X5 : set β‡’ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (p X6 β†’ atleast6 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ (Β¬ (f X5 ∈ X5))) β†’ (Β¬ TransSet (In_rec_i (Ξ»X7 : set β‡’ Ξ»X8 : set β†’ set β‡’ X8 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) X4)) β†’ (Β¬ (V_ X6 ∈ X6))))))) ∧ ((((p X4 ∧ (((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) β†’ (Β¬ p X4)) ∧ (((ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ ((((Β¬ p X2) β†’ ((Β¬ p X4) ∧ p X4)) β†’ atleast3 X4) ∧ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ (Β¬ p (Inj0 X3))) β†’ exactly2 X4 β†’ (Β¬ exactly5 X3))) ∧ (ordinal X4 β†’ ((((Β¬ p (f X4)) ∧ ((Β¬ nat_p X3) ∧ (exactly3 βˆ… β†’ (Β¬ SNo_ X4 X4) β†’ ((((Β¬ p X4) β†’ (((p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) ∧ ((((Β¬ p X3) ∧ (Β¬ p X2)) ∧ (p (binintersect X4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) β†’ atleast2 X3)) ∧ p (f X4)) ∧ (SNo βˆ… β†’ exactly4 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) β†’ p X2) ∧ TransSet X4) β†’ exactly5 βˆ…))) ∧ (((Β¬ p X3) β†’ (Β¬ (f X3 ∈ X4))) β†’ (atleast3 X3 β†’ (Β¬ (X3 βŠ† X3))) β†’ ((((Β¬ p X2) β†’ ((p X3 β†’ (Β¬ p X3) β†’ exactly5 βˆ…) β†’ (Β¬ p X4)) β†’ (((Β¬ SNoLe X4 X2) β†’ (Β¬ p βˆ…)) ∧ ((X4 ∈ X4) ∧ (p X3 β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))))) β†’ p X3) ∧ (Β¬ TransSet X2)))) ∧ (Β¬ p X2))))) ∧ exactly4 X4) ∧ ((((Β¬ p X4) β†’ p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ p X3)) ∧ p X3)) ∧ p (𝒫 X4)))) β†’ (Β¬ p X4)) ∧ (p X3 β†’ set_of_pairs (f (f (f X4))) β†’ ((((Β¬ p X3) ∧ ((p X3 ∧ ((Β¬ p X4) β†’ p X2)) β†’ (Β¬ p X4) β†’ (((Β¬ p βˆ…) ∧ (atleast2 X3 ∧ (exactly3 X4 β†’ (((((((((Β¬ p X4) β†’ (Β¬ p X4)) ∧ (((Β¬ p X4) β†’ (Β¬ p X4)) β†’ (Β¬ exactly3 X3))) ∧ ((Β¬ p (f X3)) ∧ ((Β¬ p (f (PSNo X3 (Ξ»X5 : set β‡’ (Β¬ p X4))))) β†’ (Β¬ atleast6 X2)))) β†’ p (f X3)) β†’ (Β¬ nat_p (f X4))) ∧ (((Β¬ p X4) ∧ p βˆ…) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ nat_p X2))) ∧ ((Β¬ atleast3 X4) ∧ (((((Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast6 X4)) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ (Β¬ p (f X4)) β†’ (Β¬ p X3)) ∧ (((((Β¬ exactly2 βˆ…) ∧ (((Β¬ p X4) ∧ (((((Β¬ atleast5 X2) β†’ atleast5 βˆ… β†’ (Β¬ atleast2 X3)) β†’ ((Β¬ p X3) ∧ (Β¬ exactly4 βˆ…))) ∧ ((Β¬ (βˆ… βŠ† proj0 X4)) β†’ (Β¬ p X4))) ∧ exactly2 βˆ…)) β†’ (p X3 β†’ (((p X4 ∧ ((Β¬ p (f X3)) β†’ p X3)) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ (Β¬ exactly5 X4))) β†’ (((p X4 β†’ p X2 β†’ (Β¬ p (lam2 (f X4) (Ξ»X5 : set β‡’ X5) (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ X6)))) β†’ (((Β¬ exactly3 X4) ∧ ((Β¬ p X3) ∧ p X4)) ∧ (Β¬ atleast5 (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))) ∧ p X3))) β†’ p X3) β†’ p X3) β†’ (Β¬ exactly3 X3))))) β†’ (atleast4 X3 ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) β†’ (Β¬ atleast2 (f X2))))) ∧ (Β¬ exactly5 X4)))) ∧ (Β¬ atleast4 X4)) ∧ ((p X4 β†’ (Β¬ p X4)) β†’ ((exactly2 X4 ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))))))) ∧ ((((Β¬ p X3) β†’ (Β¬ p X3) β†’ ((p X3 ∧ p βˆ…) ∧ ((p X4 ∧ ((Β¬ p X2) β†’ p X3)) ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (atleast3 X4 ∧ (Β¬ atleast4 (f (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))))))) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ p X4))) ∧ (Β¬ p X4)))) ∧ ((SNoLe X2 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ TransSet X2) β†’ p (f X2)))) β†’ ((((atleast6 X2 β†’ (((p X3 β†’ (Β¬ p X4)) ∧ ((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) ∧ exactly2 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (((Β¬ p (f X3)) β†’ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (X5 ∈ X5))) β†’ (Β¬ p X4))) β†’ atleast5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((p (f X4) β†’ ((p (proj1 X4) ∧ (exactly2 X4 ∧ ((Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ exactly3 X5))) ∧ (((((Β¬ SNo X4) β†’ (((exactly2 X3 ∧ ((Β¬ p X2) β†’ (p (f X3) ∧ (((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (((TransSet X4 β†’ ((p X4 β†’ (Β¬ partialorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ atleast6 X6))) ∧ ((((((Β¬ p X4) ∧ (p X2 ∧ p (Inj0 βˆ…))) β†’ (Β¬ p X3)) ∧ (Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ atleast2 (binunion (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) X6))))) ∧ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (((((exactly2 X4 ∧ exactly5 X3) β†’ p X3 β†’ (Β¬ p X4)) β†’ trichotomous_or_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ atleast5 X2)) β†’ p βˆ… β†’ ((Β¬ atleast6 X4) ∧ ((Β¬ exactly5 X4) β†’ (Β¬ p X3)))) ∧ ((((Β¬ atleast2 X4) ∧ ((p X2 ∧ ((Β¬ setsum_p X3) β†’ (p X4 ∧ p X2))) ∧ (p X4 ∧ ((((Β¬ p (f X4)) β†’ (Β¬ TransSet X4)) ∧ ((Β¬ p X2) β†’ p X4)) ∧ ((Β¬ p X3) β†’ (Β¬ p X2)))))) ∧ (((Β¬ TransSet X3) β†’ (atleast2 X4 ∧ p (Sep X4 (Ξ»X5 : set β‡’ (Β¬ p X5))))) β†’ ordinal X4 β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) ∧ (Β¬ atleast2 X3)))))) β†’ ((Β¬ p X4) ∧ (p X3 β†’ (Β¬ exactly5 X4)))) β†’ strictpartialorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ p X5))) β†’ (Β¬ exactly4 (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))))) β†’ (p X4 ∧ (Β¬ nat_p βˆ…)))) ∧ ((exactly3 X2 β†’ (Β¬ p X4) β†’ exactly3 X4) β†’ (atleast4 (Unj X3) ∧ ((Β¬ p (f βˆ…)) ∧ (Β¬ tuple_p X4 X2))) β†’ (atleast3 X4 ∧ p X3))) ∧ ((Β¬ p X4) β†’ p X4 β†’ (Β¬ p X4) β†’ ((atleast2 X4 ∧ (Β¬ p X4)) ∧ (Β¬ atleast4 X3))))) β†’ (Β¬ p (f βˆ…))) β†’ TransSet X3) β†’ (((set_of_pairs X4 ∧ ((((p X4 β†’ (Β¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ ((p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ SNoLt X2 (UPair X4 X3)) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) ∧ (Β¬ p X4)) ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) β†’ exactly3 βˆ…) ∧ (Β¬ p X4)))))) ∧ ((Β¬ TransSet X2) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) β†’ (Β¬ p X3) β†’ p X2))) β†’ (Β¬ atleast6 (f X4)) β†’ exactly3 (f X3)))) ∧ ((((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ (p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ (((Β¬ p X3) β†’ (Β¬ p (f X4)) β†’ (Β¬ exactly4 X4) β†’ p X4) β†’ (((Β¬ TransSet X3) β†’ ((p X4 ∧ ((Β¬ p X4) ∧ p X4)) ∧ atleast2 (f (f X4)))) ∧ ((Β¬ (X2 ∈ X4)) β†’ exactly2 (f X3))) β†’ (Β¬ atleast3 (f X3))))) ∧ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ exactly5 X3) β†’ (ordinal βˆ… ∧ ((((nat_p X4 β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ (Β¬ p X4)) ∧ (p (f X4) ∧ ((Β¬ setsum_p X2) β†’ (Β¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))))))) ∧ PNoEq_ (f (Inj1 X3)) (Ξ»X5 : set β‡’ ((TransSet X5 β†’ (X5 ∈ Inj1 X3)) ∧ (set_of_pairs X3 β†’ atleast6 X2)) β†’ (Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) (Ξ»X5 : set β‡’ ((p X3 β†’ (Β¬ SNoEq_ X4 X3 X4)) ∧ (Β¬ p X4)))) ∧ ((((Β¬ p (f (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) β†’ (Β¬ atleast6 X4)) β†’ p βˆ…) ∧ p βˆ…))) β†’ p X3)) ∧ TransSet X3)) β†’ p (𝒫 (Inj0 X4))))) ∧ (Β¬ p X2)) ∧ (((p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) ∧ (Β¬ p (Inj0 X2))) ∧ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ (Β¬ p X4)))) β†’ atleast6 X3))))) β†’ ((((((Β¬ p βˆ…) β†’ (Β¬ atleast3 (f βˆ…))) ∧ ((Β¬ p X3) β†’ (Β¬ p X4))) ∧ (Β¬ SNo X4)) ∧ ((Β¬ p X3) ∧ (Β¬ p X2))) ∧ ((p X4 β†’ (((p X2 ∧ (((((Β¬ atleast5 X4) ∧ ((Β¬ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) β†’ ((((Β¬ TransSet X4) β†’ p X3) β†’ p X4) ∧ ((Β¬ exactly2 X4) ∧ atleast4 X4)))) ∧ atleast2 X4) β†’ (Β¬ PNo_upc (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ prop β‡’ (Β¬ exactly2 βˆ…)) X4 (Ξ»X5 : set β‡’ (Β¬ p (ordsucc X4))))) β†’ (Β¬ p X3))) β†’ setsum_p X2 β†’ ordinal (f X4)) ∧ (Β¬ atleast6 (f (f X3))))) ∧ (Β¬ exactly2 X3)))) β†’ ((((set_of_pairs X3 ∧ p X4) ∧ ((((((p X4 β†’ ((((Β¬ p X2) ∧ ((((Β¬ nat_p βˆ…) β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ p X4) ∧ ((p X3 ∧ p X2) ∧ p X4))) ∧ p (f X3)) ∧ (p X4 ∧ (Β¬ p X4)))) ∧ p X3) ∧ p X2) β†’ (p X3 ∧ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ ((((βˆ… βŠ† binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ p (f X3)) β†’ ((exactly3 X3 ∧ (p X3 β†’ atleast4 X4)) ∧ (((Β¬ atleast5 X4) β†’ (p X4 ∧ ((((exactly5 X3 ∧ (Β¬ exactly3 X4)) ∧ (tuple_p X2 X4 β†’ (((Β¬ p X2) β†’ ((Β¬ SNo X3) ∧ (Β¬ nat_p X2)) β†’ (p X4 ∧ (Β¬ atleast2 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) ∧ exactly5 (f X4)) β†’ (exactly2 X4 ∧ ((p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) β†’ ((atleast4 (proj1 (f X4)) ∧ (Β¬ atleast2 X2)) ∧ p X4)) ∧ exactly5 X2)))) β†’ ((Β¬ atleast5 X2) ∧ (Β¬ p X2))) ∧ ((Β¬ (X3 = X2)) ∧ (((((Β¬ TransSet X2) ∧ (ordinal X3 ∧ (Β¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))) β†’ (Β¬ p X4)) β†’ p βˆ…) β†’ (p X4 ∧ (Β¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))))))) ∧ ((p X2 ∧ ((Β¬ set_of_pairs X4) β†’ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) β†’ (p X4 ∧ ((((nat_p βˆ… ∧ (((((p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (((((Β¬ p X3) ∧ (((((Β¬ atleast6 (f X3)) ∧ (p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ ((exactly5 X3 ∧ (Β¬ p X4)) ∧ ((p βˆ… β†’ ((atleast5 X3 β†’ ((exactly5 (f βˆ…) β†’ (set_of_pairs (binunion X2 X2) β†’ ((Β¬ SNoLe X4 X2) ∧ ((((ordinal X3 ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ ((p X2 β†’ ((Β¬ setsum_p (f (f X4))) ∧ (X4 βŠ† X2))) β†’ (Β¬ ordinal X2)))) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ p X2) ∧ ((((p X2 β†’ (Β¬ (X3 = binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ ((Β¬ p X2) ∧ p X4)) ∧ (((((Β¬ atleast6 X4) β†’ ((Β¬ p X4) ∧ ((SNo X4 ∧ ((Β¬ p X3) β†’ (Β¬ p X3))) ∧ SNo (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ p (f (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) β†’ (Β¬ atleast5 X2)) β†’ (Β¬ p X3))) ∧ (Β¬ p X3))))) β†’ atleast6 X4) β†’ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ atleast2 X6)))) ∧ (((Β¬ p (Inj0 X4)) ∧ (Β¬ atleast6 X3)) ∧ ((p X4 ∧ p X3) ∧ (Β¬ p X2)))) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ atleast4 X3) ∧ (p X4 ∧ ((Β¬ p X4) β†’ ((Β¬ p X4) ∧ (Β¬ SNo (ordsucc X2))) β†’ equip X3 (⋃ (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))))))))) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ (((((Β¬ exactly4 X4) ∧ ((((Β¬ p X2) ∧ (TransSet X3 ∧ (Β¬ SNo X4))) ∧ (((exactly4 X2 β†’ p X4) ∧ ((atleast2 (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ eqreln_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ exactly2 X4)))) β†’ (Β¬ SNoLe X3 X4))) ∧ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) β†’ (Β¬ atleast6 (f (f X4))))) ∧ ((((Β¬ (X3 ∈ X4)) β†’ p X3) β†’ ((p X3 β†’ exactly5 X2) ∧ (Β¬ ordinal X3))) β†’ atleast2 (V_ (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) ∧ exactly3 X4) ∧ (((((Β¬ set_of_pairs X2) β†’ (p X3 ∧ (((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast4 βˆ…)) β†’ (p X4 ∧ (exactly4 X3 ∧ p X3))))) β†’ ((Β¬ atleast2 (f βˆ…)) ∧ (Β¬ nat_p X4))) β†’ (Β¬ atleast3 X4)) ∧ (set_of_pairs X2 ∧ (((Β¬ exactly5 (Pi X3 (Ξ»X5 : set β‡’ X4))) ∧ (Β¬ exactly3 (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) β†’ (Β¬ atleast5 X2)))))) β†’ ((Β¬ p X4) ∧ (Β¬ p X3)))) ∧ (Β¬ atleast4 X3)) ∧ SNo X3) β†’ ((p (f X3) ∧ p X4) ∧ nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ atleast2 X3) β†’ ((p X3 ∧ (((((atleast4 X3 ∧ atleast4 (Inj1 X3)) β†’ ((((Β¬ p (f X4)) ∧ (Β¬ exactly3 (f X3))) ∧ (p (f (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ p X4)) ∧ (p X4 ∧ (p X4 β†’ p X3)))) β†’ (Β¬ p (f (f X4))) β†’ (SNo X4 ∧ ((((Β¬ p X2) ∧ ((p X4 β†’ p X4) ∧ (Β¬ p X3))) β†’ ((((((((((Β¬ p X4) β†’ p X4) ∧ (Β¬ set_of_pairs X4)) ∧ (((Β¬ (X2 ∈ binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ (Β¬ p X2))) β†’ SNo_ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) X2) β†’ (ordinal X3 ∧ (Β¬ p X2))) β†’ (Β¬ set_of_pairs X2)) ∧ TransSet X4) β†’ (Β¬ p X4)) ∧ ((p X3 β†’ (Β¬ p (f βˆ…))) β†’ ((Β¬ p X3) β†’ atleast3 X3) β†’ (Β¬ p X4) β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))))) β†’ (Β¬ atleast6 X2)))) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) β†’ (p X2 ∧ (SNo X2 ∧ (p X2 β†’ ((exactly3 X3 ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((Β¬ p X4) ∧ ((p (binunion (Unj (f X4)) X2) β†’ exactly2 X4) β†’ (((p βˆ… β†’ (Β¬ p X3)) β†’ ((((p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ p X4) ∧ (((((p X3 β†’ p X4) β†’ (Β¬ atleast6 X3)) ∧ (p X2 ∧ p βˆ…)) β†’ (p X2 β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ ((Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…) ∈ X6) ∧ p X3))) ∧ (((((Β¬ p X3) β†’ (atleast2 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) ∧ p (combine_funcs X3 X4 (Ξ»X5 : set β‡’ βˆ…) (Ξ»X5 : set β‡’ X5) X3))) β†’ (atleast5 X2 ∧ ((irreflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (((((Β¬ p X2) ∧ ((Β¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ p X5 β†’ p X6)) β†’ (((Β¬ p (⋃ βˆ…)) ∧ (Β¬ p X6)) ∧ ((Β¬ SNoEq_ (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) X6 X5) ∧ (p X4 β†’ atleast6 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ (X5 = X6)) β†’ (Β¬ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ p (binintersect X7 X7)))))))) ∧ (((Β¬ binop_on X3 (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ X8)) β†’ ((((Β¬ p (f (proj1 X6))) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ (p (⋃ X4) ∧ ((p X6 ∧ ((Β¬ TransSet X5) β†’ (Β¬ exactly2 X6) β†’ ((((binop_on (𝒫 X5) (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ setexp (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) X7) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ ((((Β¬ nat_p X5) ∧ p βˆ…) ∧ (((p X2 ∧ (((atleast2 X6 ∧ ((p βˆ… ∧ ((p (lam2 X6 (Ξ»X7 : set β‡’ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ setsum X7 βˆ…)) ∧ ((Β¬ nat_p (𝒫 X3)) β†’ linear_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ atleast3 X7)))) β†’ (Β¬ p X6) β†’ (p X5 ∧ (Β¬ p X5)))) ∧ ((Β¬ p X5) β†’ (((Β¬ p X6) ∧ (((atleast3 X5 ∧ (exactly5 X4 ∧ ((SNo X6 β†’ atleast6 X6 β†’ (Β¬ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ exactly3 X6))) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ (Β¬ p X5))) β†’ p X6 β†’ ((exactly2 (f X6) ∧ (((p X3 ∧ ((Β¬ p X6) β†’ (((p (𝒫 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ ((Β¬ atleast2 X5) ∧ ((Β¬ p X4) β†’ (Β¬ p X3) β†’ atleast6 X5 β†’ (Β¬ PNoLt X6 (Ξ»X7 : set β‡’ (Β¬ p (f X5)) β†’ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (Ξ»X7 : set β‡’ atleast3 X7))))) ∧ (Β¬ p (f X6))) ∧ nat_p X5))) β†’ p βˆ…) β†’ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) β†’ (((Β¬ p X5) β†’ (TransSet X3 ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ (Β¬ p βˆ…)) β†’ (((Β¬ p X4) ∧ (Β¬ p X5)) β†’ (Β¬ atleast6 X5)) β†’ ((Β¬ p X4) ∧ ((Β¬ exactly2 X6) ∧ (((((Β¬ atleast4 (lam2 X5 (Ξ»X7 : set β‡’ X6) (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ X8))) β†’ (Β¬ p X6) β†’ ((Β¬ atleast4 X3) ∧ p X5)) β†’ atleast5 X5) ∧ ((Β¬ p βˆ…) β†’ (set_of_pairs X6 ∧ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))) β†’ exactly2 X6)))) β†’ (((p X5 β†’ (Β¬ atleast3 X6)) ∧ nat_p (f X6)) β†’ (Β¬ set_of_pairs (SetAdjoin X6 X5))) β†’ ((Β¬ ordinal (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ ((Β¬ p X6) β†’ (Β¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))))) ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ p X6))) β†’ (Β¬ exactly2 X3)) ∧ (Β¬ atleast4 (f (f X6))))) β†’ (Β¬ setsum_p X5)) β†’ p X6 β†’ ((((TransSet (f X5) β†’ ((Β¬ set_of_pairs (proj0 X5)) ∧ ((Β¬ bij X5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) (Ξ»X7 : set β‡’ X7)) ∧ (Β¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))))) ∧ p X5) β†’ atleast2 X4) ∧ (Β¬ p X3)))) ∧ (Β¬ p X5))) β†’ (((Β¬ p X6) ∧ (exactly4 X2 β†’ (Β¬ p X2))) ∧ (p X6 β†’ (Β¬ p (f X5))))) ∧ p βˆ…))) ∧ ((exactly2 (Inj1 X2) β†’ p X6) ∧ p X3)))) ∧ (Β¬ setsum_p (f X2)))) ∧ (Β¬ p X6))) ∧ (((Β¬ SNo X5) β†’ ((Β¬ atleast6 X5) ∧ p X4)) β†’ exactly2 X5))) β†’ atleast6 X3) β†’ ((((X2 ∈ X4) β†’ (setsum_p (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ nat_p X2)) β†’ (Β¬ TransSet X3) β†’ p X4) ∧ (Β¬ exactly4 X3))))) ∧ (SNo βˆ… ∧ (Β¬ TransSet (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))))) β†’ (Β¬ nat_p X3)))) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ ((Β¬ p (f (f X4))) β†’ ((Β¬ TransSet βˆ…) ∧ (exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) β†’ ((Β¬ p X4) β†’ atleast5 (ordsucc X4) β†’ (Β¬ p X3)) β†’ ((p X4 ∧ ((((Β¬ TransSet X2) ∧ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ p X3) β†’ p X2)) ∧ ((((Β¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ p X2) ∧ (Β¬ p (f X2)))) β†’ (Β¬ exactly5 (f βˆ…))))))) β†’ (Β¬ SNo_ X3 X4)) β†’ ((((Β¬ p (f X3)) β†’ (Β¬ p X2) β†’ (Β¬ linear_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ atleast4 X3)) β†’ (Β¬ exactly4 X4) β†’ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) ∧ ((exactly4 X2 β†’ (Β¬ atleast5 (f X2))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ exactly5 X4) β†’ ((Β¬ p X3) ∧ exactly4 X4)) ∧ (TransSet βˆ… β†’ exactly3 (f X3) β†’ p X3))))) β†’ p βˆ…)))) β†’ (((((Β¬ p (𝒫 X4)) ∧ ordinal βˆ…) ∧ ((Β¬ p (f X3)) β†’ ((exactly4 X3 β†’ (Β¬ p (SNoLev X2)) β†’ ((Β¬ p X4) ∧ exactly5 X3)) ∧ p (f X4)))) β†’ ((Β¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (p X3 ∧ nat_p (Inj1 X3))) β†’ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ set_of_pairs (f X2)))) ∧ (((((atleast6 X4 β†’ ((p X3 β†’ (((Β¬ p X3) ∧ (Β¬ exactly5 X3)) ∧ ((Β¬ p X3) ∧ p X2))) ∧ ((Β¬ p X4) ∧ (Β¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))))) β†’ ((Β¬ atleast2 X2) ∧ ((Β¬ exactly4 (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ (atleast4 X4 ∧ (Β¬ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))))) ∧ (Β¬ p (f X4))) ∧ SNo_ X3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ (((((((p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ (((p βˆ… β†’ (Β¬ atleast5 X3) β†’ (((Β¬ SNo βˆ…) ∧ (Β¬ exactly2 (ap (f βˆ…) X3))) ∧ atleast4 X2)) β†’ ((Β¬ nat_p (f βˆ…)) ∧ (Β¬ TransSet X3))) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (Β¬ exactly5 X2)) ∧ tuple_p (f X4) (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ ((Β¬ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ (Inj0 (V_ X3) ∈ X3))) ∧ exactly4 X3) β†’ (Β¬ p X2)) β†’ (Β¬ p X3)))) β†’ ((ordinal X4 ∧ (Β¬ p X4)) ∧ p (f X3)) β†’ (p X3 ∧ p X4)) ∧ ((((Β¬ atleast2 X3) ∧ ((p X4 ∧ (Β¬ p X3)) ∧ (p (f X4) ∧ p X4))) β†’ ((((Β¬ p X3) β†’ p X4) β†’ (Β¬ (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…) βŠ† βˆ…))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ atleast4 (f X3)) ∧ (((p X4 ∧ ((Β¬ p (f (⋃ (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ p X3)) ∧ ((((Β¬ exactly2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ p X4) β†’ p (V_ X3)) ∧ (((Β¬ p X3) ∧ ((Β¬ p (f βˆ…)) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) β†’ (Β¬ p (SNoLev X4)) β†’ totalorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p X4)))) β†’ atleast3 (f X2)))) ∧ p X3))) β†’ (SNo X3 ∧ ((ordinal βˆ… β†’ ((((X4 ∈ f X4) β†’ p X4) ∧ ((p X2 ∧ (Β¬ linear_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p X5) β†’ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))) β†’ (Β¬ atleast5 βˆ…) β†’ (p βˆ… ∧ (p X3 ∧ (Β¬ SNo X4))))) β†’ (Β¬ p X4) β†’ p X4) β†’ (Β¬ atleast6 X3)) β†’ (Β¬ exactly2 (f X4)) β†’ (Β¬ atleast5 X2))))) ∧ (p X2 ∧ atleast4 X2)) β†’ p X4) ∧ ((Β¬ p X3) ∧ p X3)))))) β†’ (p X4 β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ ordinal X2)) β†’ (Β¬ p X4))) ∧ TransSet X3)) β†’ (Β¬ p (f (Sing (f X4))))) ∧ (Β¬ p X2)) β†’ (Β¬ atleast6 X4)) ∧ p βˆ…) ∧ (p X4 ∧ (atleast2 X3 β†’ (p (f X4) ∧ (Β¬ p βˆ…)))))) ∧ p (f X2))) ∧ (X3 ∈ f X3))) ∧ (p X4 ∧ ordinal X3)) ∧ (Β¬ p X4)) ∧ (p βˆ… ∧ (((((((Β¬ setsum_p X4) β†’ (Β¬ p X3)) β†’ (Β¬ setsum_p X3) β†’ (((p βˆ… ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (((set_of_pairs X4 ∧ (set_of_pairs (f X4) ∧ (Β¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ (Β¬ p X3)) ∧ (Β¬ p X2))) ∧ (Β¬ setsum_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))))) β†’ ((p X3 β†’ (Β¬ atleast4 βˆ…)) ∧ ((Β¬ p X4) ∧ ((Β¬ p (Inj0 X2)) ∧ (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ… ∈ add_nat (f X4) X4))))) β†’ ((Β¬ exactly5 X2) ∧ (p X3 β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) ∧ ((Β¬ p X4) β†’ (Β¬ exactly5 X4))) β†’ (Β¬ atleast5 X3)))) ∧ ((atleast5 (f X4) β†’ (p X2 ∧ p X4)) β†’ (Β¬ exactly3 X3) β†’ (p X2 ∧ p X3)))))) β†’ (atleast2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ (exactly5 (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ ((Β¬ p (f X3)) β†’ ((Β¬ equip βˆ… X3) ∧ (p (f βˆ…) ∧ (Β¬ atleast6 X4)))))) β†’ ((Β¬ exactly2 X2) ∧ ((((p (f X3) ∧ (Β¬ p X4)) ∧ (p βˆ… β†’ ((((Β¬ atleast6 X2) ∧ p X2) β†’ (Β¬ tuple_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) X3)) ∧ ((p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) β†’ ((((((Β¬ exactly5 X3) ∧ ((p βˆ… β†’ (((Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ (X5 ∈ binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ordinal βˆ…)) β†’ (Β¬ atleast2 X3)) ∧ (exactly5 X2 ∧ ((Β¬ nat_p X3) β†’ p X2)))) β†’ exactly3 βˆ…)) β†’ (Β¬ exactly2 X4)) β†’ p X3) β†’ atleast4 X3) ∧ atleast2 X4)) β†’ atleast3 (f X3))))) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ TransSet βˆ…)))))) ∧ (set_of_pairs (f (SNoLev (V_ (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))))) ∧ (βˆ€X2 : set, βˆ€X3 : set, βˆ€X4 βŠ† X3, (Β¬ p X4))) β†’ (βˆ€X2 : set, (βˆƒX3 : set, ((βˆ€X4 : set, (Β¬ setsum_p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ atleast2 X3)) ∧ (p (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (βˆƒX4 : set, ((X4 βŠ† X3) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))))) β†’ (βˆƒX3 : set, βˆ€X4 βŠ† f (f X3), (((Β¬ p X4) ∧ (p (f (SetAdjoin X3 X2)) β†’ ((Β¬ p βˆ…) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))) ∧ p X4)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMPQeiDcSWUGZtPxMjdtCccgWih1SY7RWsn)
(((βˆƒX2 : set, ((βˆƒX3 : set, βˆ€X4 βŠ† X2, ((Β¬ exactly4 X4) ∧ (p (f (f X3)) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))))) ∧ (βˆ€X3 ∈ f X2, βˆ€X4 : set, ((Β¬ p X3) ∧ atleast2 (f (V_ X3)))))) β†’ (βˆ€X2 βŠ† binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…), (βˆƒX3 ∈ X2, (Β¬ exactly3 X2)) β†’ ((Β¬ SNoLt (f X2) (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (((((βˆ€X3 βŠ† f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…), ((βˆ€X4 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)), p X3) ∧ (Β¬ atleast2 X3))) β†’ (βˆƒX3 ∈ X2, atleast2 X2)) ∧ p X2) ∧ (βˆƒX3 : set, ((βˆ€X4 ∈ X3, (Β¬ tuple_p βˆ… (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) ∧ (βˆƒX4 ∈ X3, (Β¬ exactly5 X4))))) β†’ (βˆƒX3 ∈ βˆ…, (βˆƒX4 ∈ 𝒫 (f βˆ…), (Β¬ p (f X2))) β†’ (βˆ€X4 : set, ((p X3 ∧ p X4) ∧ ((((Β¬ nat_p X2) ∧ (Β¬ p X2)) β†’ p X2) β†’ ((atleast2 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p (f X4)) β†’ (((((((Β¬ p X2) β†’ ((((Β¬ p (Inj0 (f X2))) β†’ exactly5 X4) ∧ (((atleast3 X2 ∧ (Β¬ p (f X4))) ∧ atleast6 X4) β†’ ((exactly4 X3 β†’ (((atleast6 X4 β†’ (Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ set_of_pairs X2) β†’ ((Β¬ atleast4 (f X2)) ∧ (Β¬ exactly3 βˆ…))) ∧ SNo (f X3))) ∧ (Β¬ p X3)))) ∧ ((Β¬ p (⋃ X4)) β†’ SNo X2)) β†’ (Β¬ exactly4 (Sing X4))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ exactly2 βˆ…) ∧ ((Β¬ atleast2 X2) β†’ p X2)) ∧ (nat_p (add_nat X4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ ((p X4 ∧ (exactly5 X3 β†’ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)))) ∧ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) ∧ ((((((Β¬ p X4) β†’ p X3) ∧ (Β¬ p X4)) β†’ (Β¬ exactly5 X3)) β†’ (Β¬ p X3)) β†’ ((Β¬ p X2) ∧ ((((Β¬ ordinal X4) β†’ ((((Β¬ exactly5 X2) β†’ p βˆ…) β†’ atleast5 (SNoLev βˆ…) β†’ (((((Β¬ p X4) β†’ atleast2 X3) β†’ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ (f X4 ∈ βˆ…)) ∧ (Β¬ p X4))) ∧ ((p X2 ∧ (Β¬ SNo (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ p (⋃ X2))) β†’ exactly3 (f X3)) β†’ ((Β¬ p X4) ∧ (Β¬ exactly3 X3))) β†’ atleast4 X2)) β†’ ((Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (p X3 β†’ (Β¬ exactly4 X3))) β†’ exactly2 (f X4) β†’ (Β¬ atleast3 (f X4)))) β†’ (Β¬ TransSet (lam2 X3 (Ξ»X5 : set β‡’ X4) (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ X5))))))) β†’ ((Β¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) ∧ ((Β¬ p (f X3)) ∧ ((Β¬ p X4) ∧ (p (⋃ (f X3)) β†’ (Β¬ p (Inj0 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))))))) β†’ ((p X3 ∧ (Β¬ p X4)) ∧ ((Β¬ atleast2 (f (f X4))) β†’ (Β¬ atleast6 X4) β†’ p X2))) ∧ p X2))))))) β†’ ((βˆƒX3 : set, (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∈ binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((Β¬ ordinal X2) β†’ (βˆƒX3 ∈ βˆ…, (((βˆƒX4 ∈ f X3, (((X4 ∈ Inj0 (setexp X4 X3)) ∧ ((ordinal X4 ∧ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ atleast5 X4)) ∧ atleast3 X3)) ∧ ((βˆƒX4 : set, ((X4 βŠ† X2) ∧ (Β¬ set_of_pairs X3))) β†’ (Β¬ p βˆ…))) ∧ ((Β¬ p βˆ…) β†’ ((Β¬ ordinal X2) ∧ exactly2 X2))))))) β†’ (βˆ€X2 : set, (p (f X2) β†’ ordinal X2) β†’ atleast5 X2)) ∧ (βˆƒX2 : set, (((βˆ€X3 βŠ† f X2, p X3) β†’ exactly1of2 (βˆƒX3 ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…, (Β¬ p (f (f X2)))) (exactly2 X2)) ∧ (exactly4 (f X2) β†’ (βˆ€X3 : set, (βˆƒX4 : set, nat_p X3) β†’ nat_p X2) β†’ (βˆ€X3 ∈ X2, βˆƒX4 : set, (p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ (((atleast4 X4 ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) ∧ ((tuple_p (⋃ (f X4)) X2 β†’ set_of_pairs (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast2 X4)))))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMJ6yMYgzvLBD3qT143ug2VTWHLZahYdZad)
βˆ€X2 ∈ f (f βˆ…), βˆƒX3 ∈ βˆ…, βˆƒX4 : set, ((X4 βŠ† 𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) ∧ ((atleast3 X3 ∧ (p (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ p βˆ…))) β†’ (Β¬ exactly5 (f X3))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMXMgHQ7TvmrNS88TQVYbCbXbwMbGY7T36S)
βˆ€X2 ∈ binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…, βˆƒX3 : set, ((βˆ€X4 : set, ((Β¬ p X4) β†’ ((Β¬ p (f X4)) ∧ (Β¬ p X3))) β†’ ((((((Β¬ p X3) ∧ p X3) ∧ (X3 = proj0 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) β†’ (Β¬ atleast3 X3)) β†’ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ (((Β¬ exactly4 (f (f X3))) β†’ atleast3 βˆ… β†’ p X3) β†’ ((Β¬ p X4) ∧ p X3)))) ∧ (βˆ€X4 βŠ† X2, (p X2 ∧ ((Β¬ TransSet X3) β†’ (f (SetAdjoin X4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∈ 𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMMX8iqTv81JwSzKhejqkRoUoXrrLymGYXc)
((βˆƒX2 : set, ((X2 βŠ† 𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) ∧ ((βˆ€X3 βŠ† f X2, βˆƒX4 : set, ((((((Β¬ exactly2 X2) ∧ (Β¬ exactly4 X4)) ∧ p X2) β†’ (((Β¬ p X4) ∧ p X4) ∧ ((setsum_p X3 ∧ (Β¬ p X4)) ∧ p X2))) β†’ (((Β¬ exactly3 (Inj1 X3)) β†’ (Β¬ p X4)) ∧ (((((p X3 β†’ (Β¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (((Β¬ p X3) β†’ (((exactly5 X3 ∧ ((Β¬ p (f (Inj1 X2))) β†’ (Β¬ p X2))) β†’ ((((((Β¬ SNo (f X3)) β†’ (Β¬ p X3) β†’ ordinal X3) ∧ (((SNo (f X3) ∧ p (setsum X4 (UPair X4 X3))) β†’ p X2) ∧ p (f X3))) ∧ (Β¬ nat_p X3)) ∧ p X2) ∧ atleast2 X2)) ∧ exactly3 X2) β†’ nat_p (f X3)) β†’ (p X2 ∧ ((((p X2 ∧ (X4 ∈ X4)) ∧ ((Β¬ p (f X4)) ∧ (Β¬ binop_on βˆ… (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ X2)))) β†’ (((p X3 ∧ (atleast6 (f (Repl (lam2 X4 (Ξ»X5 : set β‡’ X5) (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ X5)) (Ξ»X5 : set β‡’ X4))) ∧ atleast5 X2)) ∧ (((p βˆ… ∧ (((p X2 ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (exactly3 X3 β†’ ((((((((p X3 β†’ ((Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ p X4)) β†’ atleast5 X3) ∧ exactly5 X3) ∧ (Β¬ p (f βˆ…))) ∧ ((exactly5 X3 ∧ symmetric_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ atleast6 X3))) β†’ atleast3 X4)) ∧ (((((atleast2 X3 ∧ (((Β¬ p βˆ…) ∧ (ordinal X4 β†’ p X3)) β†’ atleast5 (Inj1 X4))) β†’ ((p X3 β†’ p X4) ∧ p X3)) β†’ ((Β¬ atleast6 βˆ…) ∧ (Β¬ exactly4 (f X3)))) ∧ p X2) β†’ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) β†’ SNo_ X3 X4 β†’ p X4 β†’ SNo X2) β†’ (Β¬ p (Inj0 (SNoElts_ (f X3)))) β†’ exactly4 X4)) β†’ (((Β¬ (X4 ∈ f X3)) β†’ (Β¬ atleast4 X4)) ∧ (((Β¬ p X3) ∧ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…) ∈ X4)) β†’ (Β¬ p X4)))) ∧ ((p X2 β†’ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ ((((Β¬ p X2) β†’ (Β¬ p X2)) β†’ (Β¬ atleast2 X4)) β†’ p βˆ…) β†’ (Β¬ p (f X4)) β†’ (Β¬ p X4)) ∧ (SNoElts_ (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) βŠ† βˆ…)))))) ∧ trichotomous_or_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ atleast3 X4))) β†’ (Β¬ exactly2 βˆ…))) β†’ (p βˆ… ∧ ((Β¬ exactly3 X3) ∧ (Β¬ nat_p X4)))) β†’ exactly2 X4)) ∧ (Β¬ setsum_p X3))) ∧ (Β¬ setsum_p X3))))) β†’ (Β¬ p (binunion X2 X2)) β†’ (Β¬ TransSet X3)) β†’ (Β¬ exactly4 X4)) β†’ p X4)) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ p X4)) ∧ (Β¬ p (Inj1 (V_ X2)))))) β†’ (βˆƒX2 : set, ((X2 βŠ† binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ p βˆ…))) β†’ ((βˆ€X2 ∈ f βˆ…, βˆ€X3 : set, (βˆ€X4 βŠ† X2, p X3) β†’ (βˆ€X4 βŠ† binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…), ((Β¬ p (f X4)) ∧ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) ∧ (((((βˆ€X2 : set, (Β¬ reflexive_i (Ξ»X3 : set β‡’ Ξ»X4 : set β‡’ atleast5 X3)) β†’ (βˆƒX3 ∈ f X2, βˆƒX4 : set, p X4)) β†’ (βˆ€X2 : set, ((βˆƒX3 : set, ((βˆ€X4 βŠ† X3, p X4) ∧ ((βˆƒX4 : set, (((X3 = Sing X4) β†’ p X4) ∧ p βˆ…)) β†’ p X2))) ∧ (Β¬ p (f (f X2)))) β†’ ((βˆ€X3 βŠ† X2, βˆ€X4 : set, (SNo_ X2 X4 β†’ nat_p βˆ… β†’ atleast3 X2) β†’ (exactly4 βˆ… ∧ p X4)) ∧ (βˆ€X3 : set, βˆ€X4 : set, SNoLe X3 (Inj1 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))))) ∧ (βˆƒX2 : set, (βˆƒX3 ∈ X2, (βˆ€X4 : set, (((Β¬ atleast2 (f X3)) β†’ (((p X4 β†’ (((Β¬ p (𝒫 X2)) ∧ ((exactly3 (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ atleast6 X3) β†’ ((equip X4 X4 β†’ p X3 β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((TransSet (f X4) β†’ (Β¬ atleast2 X2)) β†’ (Β¬ atleast6 X4) β†’ p X3)))) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ ordinal X3)) ∧ (((Β¬ TransSet X3) ∧ ((Β¬ p X4) ∧ (((Β¬ p X3) β†’ (Β¬ p (f βˆ…))) ∧ atleast3 βˆ…))) β†’ (p X4 ∧ (Β¬ p X4)) β†’ (Β¬ atleast5 X3))) ∧ (Β¬ p (f X4)))) ∧ (Β¬ set_of_pairs X3)) β†’ (((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ (((((Β¬ p X3) β†’ (Β¬ p X4)) β†’ (Β¬ exactly2 X2)) ∧ (((Β¬ p X4) β†’ ((((Β¬ (X3 = X2)) ∧ (Β¬ p (f X3))) β†’ p (f X3)) ∧ (atleast2 X4 β†’ (Β¬ p (𝒫 X2))))) ∧ ordinal βˆ…)) ∧ atleast2 X3)) ∧ (Β¬ p X4))) β†’ (βˆ€X4 : set, (((p X2 ∧ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ (Β¬ p (f X4))) ∧ ((((((atleast4 (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (((((Β¬ p X3) ∧ (((((p X4 β†’ p X2) β†’ (TransSet (Inj1 X4) ∧ ((atleast6 (f X4) β†’ (Β¬ p X4) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ (Β¬ exactly5 X4)))) ∧ (((Β¬ p (f X3)) β†’ ((Β¬ atleast5 X4) ∧ ((((Β¬ p X4) β†’ (((Β¬ nat_p X3) β†’ atleast4 X4) ∧ (((((setsum_p (⋃ X4) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ p X2) ∧ (p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ (Β¬ TransSet X4))) β†’ ((Β¬ SNoLe X4 X2) β†’ (Β¬ exactly4 X4) β†’ (Β¬ exactly5 X2) β†’ exactly3 (f βˆ…)) β†’ atleast3 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ ((Β¬ atleast6 X4) β†’ exactly5 X4))) β†’ ((Β¬ setsum_p X2) β†’ (p βˆ… ∧ (((((p X4 β†’ atleast4 X4) β†’ atleast6 (setminus βˆ… X2)) ∧ (((Β¬ p βˆ…) ∧ (Β¬ eqreln_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ TransSet X3))) ∧ tuple_p X3 X2)) ∧ (SNo X3 ∧ (Β¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) ∧ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ p X3) ∧ (Β¬ exactly2 (𝒫 X3)))))) β†’ TransSet X2) β†’ p X4) β†’ atleast2 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ ((Β¬ p X4) ∧ ((Β¬ atleast4 X4) ∧ set_of_pairs X3))) ∧ (((Β¬ ordinal X3) β†’ (((((Β¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ (Β¬ p βˆ…)) ∧ (p X2 ∧ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ (Β¬ atleast6 X4))) ∧ (((Β¬ atleast2 X3) β†’ atleast6 X2) β†’ p X4 β†’ (Β¬ equip βˆ… βˆ…))))) β†’ (Β¬ atleast6 (f (f (f X4)))) β†’ (Β¬ TransSet X4) β†’ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ p X3)) β†’ atleast4 X4)) ∧ p X2) ∧ (Β¬ p (ordsucc X3))) β†’ (Β¬ exactly5 X3)) β†’ (Β¬ p X3)) ∧ exactly5 X3) β†’ (Β¬ exactly5 X3)) ∧ ((Β¬ p X4) β†’ ((nat_p X3 β†’ (Β¬ atleast2 X4)) ∧ (p X4 ∧ (Β¬ nat_p βˆ…))))) β†’ p X3 β†’ (((Β¬ atleast3 βˆ…) ∧ (Β¬ atleast6 X4)) ∧ ((exactly2 βˆ… β†’ (Β¬ exactly3 X4)) β†’ p (f X4)))) ∧ p X3)) β†’ (Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ p X3)) β†’ (βˆ€X3 βŠ† f X2, (SNoLe X3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) ∧ (βˆ€X4 : set, (Β¬ atleast5 (f (f X3)))))))) β†’ (βˆƒX2 : set, ((βˆƒX3 : set, ((X3 βŠ† X2) ∧ atleast6 βˆ…)) ∧ ((βˆ€X3 ∈ UPair (f X2) (f (f X2)), βˆƒX4 : set, p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (βˆ€X3 : set, (βˆ€X4 : set, p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ ((βˆƒX4 : set, (((p X3 β†’ (Β¬ p (f X4))) β†’ (((Β¬ tuple_p X4 X3) β†’ (Β¬ p X4)) ∧ p X2)) ∧ (((Β¬ exactly5 (Inj1 (f X2))) β†’ (((Β¬ p X4) β†’ (Β¬ exactly4 X4) β†’ (p X4 ∧ (Β¬ p (Inj1 βˆ…)))) ∧ ((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ (((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ p X2) ∧ ((Β¬ p X4) ∧ p X4))) ∧ (((Β¬ p X4) β†’ (((Β¬ TransSet X2) β†’ (reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (atleast5 X6 ∧ (((Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (((atleast2 X6 ∧ (((((Β¬ p X5) ∧ (p X6 β†’ PNo_downc (Ξ»X7 : set β‡’ Ξ»X8 : set β†’ prop β‡’ (((X8 X7 β†’ (Β¬ setsum_p X7)) β†’ (((((Β¬ X8 X6) ∧ (Β¬ X8 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ X8 X6) ∧ ((Β¬ X8 X6) ∧ (((Β¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ set_of_pairs X6) ∧ ((Β¬ p (f X7)) β†’ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))) β†’ (atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ (Β¬ X8 X6)) β†’ ((Β¬ p (proj0 (f (SetAdjoin X7 X6)))) ∧ (atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ p X6)) β†’ (((Β¬ X8 X7) ∧ (X8 X3 β†’ (Β¬ X8 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ exactly3 X7 β†’ (Β¬ equip (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) X7))) ∧ ((X8 X6 ∧ p (f (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) ∧ (Β¬ atleast6 (Sing X6))))) β†’ (Β¬ X8 X2)) ∧ (Β¬ p X6)) β†’ p X7) (f X5) (Ξ»X7 : set β‡’ atleast5 X5))) β†’ SNoLe (V_ (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) X6) β†’ (((Β¬ atleast4 X2) β†’ (Β¬ SNo X2)) ∧ TransSet βˆ…)) β†’ eqreln_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ nat_p X8) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ (Β¬ p X5)) β†’ (exactly3 X2 β†’ (((set_of_pairs X4 ∧ (Β¬ p βˆ…)) ∧ p (f X2)) ∧ (Β¬ p X4))) β†’ (Β¬ (f X6 ∈ X5))) β†’ ((p X5 β†’ ((βˆ… = binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) β†’ (Β¬ atleast6 X2)) β†’ p X6) ∧ per_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (((((p (binrep X7 X7) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) β†’ ((((Β¬ p X7) β†’ (Β¬ p X8)) ∧ (Β¬ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ p X8))) ∧ exactly3 βˆ…) β†’ p X8) ∧ p X2) β†’ set_of_pairs X6) β†’ ((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) β†’ (atleast3 X7 ∧ ((Β¬ exactly5 X7) ∧ (((Β¬ atleast2 X7) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ (ordinal (proj0 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ p X7))))) ∧ (Β¬ p X8))))) ∧ (((Β¬ exactly4 X6) β†’ (Β¬ SNo_ X4 X6)) ∧ ((Β¬ p (setminus X5 X4)) ∧ (p (f X5) β†’ ((Β¬ p X6) ∧ (Β¬ p X6)))))))) ∧ (((Β¬ inj X3 X3 (Ξ»X5 : set β‡’ X4)) β†’ p X3 β†’ SNoLt (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) X3 β†’ (Β¬ p X3) β†’ set_of_pairs βˆ…) β†’ (Β¬ setsum_p X3)))) ∧ (Β¬ atleast2 X3)) β†’ ((Β¬ TransSet X2) ∧ (Β¬ p X3))) β†’ ((p X4 β†’ exactly2 X4) ∧ (p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ p X3 β†’ ((((Β¬ p βˆ…) ∧ (Β¬ setsum_p X4)) β†’ (((((Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ exactly2 X2)) β†’ ((atleast4 X3 ∧ (((Β¬ exactly2 X2) β†’ (Β¬ p βˆ…)) ∧ ((((((p X2 ∧ atleast4 X4) ∧ p X3) ∧ (((Β¬ p X4) β†’ ((exactly5 X4 ∧ (nat_p X4 ∧ ((Β¬ SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (p X3 ∧ (exactly5 βˆ… β†’ (Β¬ p X3)))))) β†’ (p X4 β†’ setsum_p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) β†’ p (f (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) β†’ (Β¬ p (V_ X4))) β†’ (Β¬ p X2)) ∧ (Β¬ p (famunion X3 (Ξ»X5 : set β‡’ X5))))) ∧ (((Β¬ p (f X4)) β†’ (Β¬ p X4)) β†’ p βˆ… β†’ (Β¬ atleast3 (f X4)))) ∧ (Β¬ set_of_pairs (f (f βˆ…)))) ∧ ((Β¬ PNoLt_ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) (Ξ»X5 : set β‡’ (Β¬ p X4)) (Ξ»X5 : set β‡’ p X5)) ∧ (((Β¬ atleast6 βˆ…) ∧ (((Β¬ SNoLe X2 X3) β†’ (p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) ∧ ((((((((Β¬ ordinal X4) β†’ atleast4 X3 β†’ exactly4 X2 β†’ (((Β¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ ((((nat_p X3 β†’ p X4) β†’ (Β¬ p X2)) ∧ p X4) ∧ (((Β¬ p (If_i ((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ ((Β¬ p X3) β†’ p X4)) X2 βˆ…)) ∧ ((Β¬ nat_p (Inj0 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) β†’ (((Β¬ TransSet X3) β†’ setsum_p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ ((((Β¬ p X4) ∧ ((((Β¬ transitive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((Β¬ atleast4 βˆ…) ∧ atleast4 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) β†’ atleast6 X3) β†’ ((p (f X3) ∧ (p βˆ… β†’ p (SNoLev (f X4)))) β†’ p X3 β†’ (((Β¬ atleast3 X4) β†’ (Β¬ atleast3 X2)) ∧ (((((Β¬ p (Inj0 βˆ…)) β†’ (Β¬ p X3) β†’ (((Β¬ bij X3 (Inj1 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) (Ξ»X5 : set β‡’ X2)) ∧ (Β¬ p X3)) ∧ (Β¬ p X4))) ∧ ((nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) ∧ ((Β¬ exactly4 X2) β†’ (Β¬ p X4))) ∧ ((Β¬ atleast6 X2) ∧ ((Β¬ p (f X4)) β†’ atleast2 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))) β†’ ((Β¬ p X3) ∧ ((exactly4 X4 β†’ (Β¬ atleast4 (V_ (SNoLev X3))) β†’ (Β¬ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…) βŠ† X3))) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) β†’ (Β¬ atleast4 X4)))) β†’ (Β¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ atleast2 X2) β†’ (((Β¬ exactly2 X3) β†’ (Β¬ p X4)) ∧ (((((((atleast2 X3 ∧ (((((((Β¬ exactly2 (SetAdjoin X4 X2)) ∧ TransSet X4) β†’ setsum_p X3) ∧ (((Β¬ atleast6 X3) β†’ SNo X4) ∧ (((Β¬ p (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ p X3) β†’ p (f (SNoLev βˆ…))) ∧ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) β†’ nat_p X2 β†’ (Β¬ exactly3 X3))))) ∧ p (f (f X3))) β†’ ((((Β¬ exactly4 X3) β†’ p (f (⋃ X2))) β†’ p X4 β†’ (atleast5 X3 ∧ (atleast4 X4 β†’ (Β¬ p X2)))) ∧ (Β¬ p X3))) ∧ ((((Β¬ p (f (f (f βˆ…)))) β†’ (Β¬ p (f βˆ…))) β†’ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((Β¬ p X4) β†’ p βˆ…)))) β†’ (Β¬ atleast5 X3)) ∧ p X2) β†’ (Β¬ atleast3 X2)) β†’ p X4) ∧ (Β¬ p X4)) β†’ (Β¬ p (Unj X3)))))) β†’ exactly4 X2) β†’ (Β¬ atleast3 X3))) β†’ ((p X2 β†’ (Β¬ TransSet X4)) β†’ p X2) β†’ (p X2 ∧ p X3))) β†’ ((Β¬ p X4) ∧ (Β¬ setsum_p X2))))) ∧ p X4)) ∧ SNo X4) β†’ p X3) ∧ p X3) ∧ p X3) β†’ atleast2 X2 β†’ (Β¬ nat_p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) ∧ atleast4 X3))) β†’ ordinal X2))))) ∧ (TransSet X4 β†’ (Β¬ p X3) β†’ p βˆ… β†’ (p (f X4) ∧ (((exactly3 X3 ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ((Β¬ p (f X3)) ∧ ((p (𝒫 βˆ…) β†’ (Β¬ p X4) β†’ p X4) ∧ (Β¬ symmetric_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ exactly3 X6)))))) ∧ p X3)))) β†’ p X4 β†’ p βˆ…) ∧ (Β¬ atleast4 X3)) β†’ p X3) β†’ (Β¬ exactly2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ (((Β¬ p X3) β†’ (Β¬ atleast2 X3)) ∧ (p X2 ∧ (Β¬ p X3)))))) β†’ exactly5 X2)))) β†’ exactly2 X2 β†’ ((p X4 ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ p X3) β†’ (((p (f βˆ…) ∧ ((Β¬ set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ p X4)) ∧ (exactly5 (Sing X3) β†’ (Β¬ p X4) β†’ (((exactly4 X2 ∧ (Β¬ p X3)) β†’ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) β†’ p X2)) ∧ ((Β¬ p X4) ∧ (Β¬ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))))))) ∧ (exactly2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ p X2))))) ∧ (βˆƒX4 ∈ X2, exactly4 X2))))))) ∧ (βˆƒX2 : set, βˆ€X3 : set, ((Β¬ p βˆ…) β†’ (Β¬ p X2)) β†’ (βˆ€X4 ∈ 𝒫 (𝒫 (𝒫 (𝒫 βˆ…))), (Β¬ exactly5 X3)))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMMWEccyydreNAuWgWygSa5dDuVJ9cHj5Wr)
βˆ€X2 : set, (βˆƒX3 : set, ((X3 βŠ† X2) ∧ ((βˆƒX4 : set, ((X4 βŠ† X3) ∧ SNo (f βˆ…))) β†’ ((βˆƒX4 ∈ X3, (Β¬ exactly2 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ ((tuple_p X3 X3 β†’ (p X2 ∧ p X3) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ exactly5 X3) β†’ p X3) ∧ (βˆƒX4 ∈ X3, (exactly3 X2 ∧ TransSet X4))) β†’ (Β¬ exactly2 X3)))) β†’ (Β¬ exactly2 (Inj0 X2))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMbjdyUd4XPz6quxcA8NYxHn5Vbf4YN53rf)
((βˆ€X2 βŠ† βˆ…, (Β¬ p X2)) ∧ ((Β¬ p (setprod (f (f (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) (f (f (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))))) β†’ p (mul_nat (f (f (f (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))) (f (lam2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) (Ξ»X2 : set β‡’ binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) (Ξ»X2 : set β‡’ Ξ»X3 : set β‡’ X3))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMV71qoSckWNSxU94bziT8W2e76njJZH2ru)
βˆ€X2 ∈ f βˆ…, βˆ€X3 ∈ βˆ…, βˆƒX4 : set, ((X4 βŠ† binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ ((((Β¬ atleast5 X4) ∧ (atleast2 (f X2) β†’ (((atleast6 X2 ∧ ((Β¬ transitive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ (p X6 ∧ (Β¬ atleast5 X3))))) ∧ p X2)) β†’ (Β¬ atleast3 X4)) ∧ ((((Β¬ atleast6 (⋃ X4)) ∧ p X3) ∧ (p X3 β†’ ((Β¬ setsum_p βˆ…) ∧ ((Β¬ TransSet (f X2)) β†’ (Β¬ p X3) β†’ (SNo X3 ∧ ((Β¬ atleast3 X2) β†’ exactly2 X4)) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ ((Β¬ p X4) β†’ (Β¬ exactly2 (f (SNoLev X4))) β†’ (p X4 ∧ p X3)) β†’ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ ((Β¬ nat_p (f X3)) ∧ (X2 βŠ† X4))))) ∧ (exactly4 X3 ∧ ((((Β¬ atleast2 X2) ∧ (Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ ((Β¬ exactly5 X4) β†’ ((exactly3 X4 β†’ set_of_pairs X4) ∧ (Β¬ p X3)))) β†’ (p X4 ∧ (Β¬ atleast3 X3)))))))) ∧ (Β¬ atleast2 X3)) β†’ exactly3 X4)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMVC1G2i7CViXQ1R67Xi4SQokZwdYRTy1Zz)
((βˆƒX2 : set, (βˆƒX3 : set, βˆƒX4 ∈ f X2, (Β¬ p X3)) β†’ ((βˆ€X3 : set, (βˆ€X4 βŠ† X3, atleast6 X4 β†’ exactly3 X4) β†’ (βˆ€X4 βŠ† binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…, p (f X3))) β†’ p X2) β†’ p X2) ∧ (βˆ€X2 : set, atleastp X2 (f (f (f X2)))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMRdEJGEHCWPZtQefz5UNCZMAVhd7mWZeRi)
βˆƒX2 ∈ βˆ…, (βˆƒX3 : set, βˆƒX4 : set, ((X4 βŠ† binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ set_of_pairs X3)) β†’ (βˆ€X3 : set, βˆƒX4 ∈ f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…), SNo (f X4) β†’ ((Β¬ atleast5 X3) ∧ ((Β¬ SNo X4) ∧ (Β¬ set_of_pairs X4))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMXJqge8CEmRPs8tojd3CN5CBJcKPKNhcPu)
(βˆƒX2 : set, βˆ€X3 βŠ† f (Inj0 βˆ…), (Β¬ set_of_pairs X3)) β†’ (βˆ€X2 : set, ((βˆ€X3 : set, βˆ€X4 : set, ((Β¬ p (Inj1 (f X3))) β†’ (Β¬ p (f X4))) β†’ ((p X4 ∧ (((exactly3 X4 β†’ (Β¬ atleast3 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ (((Β¬ TransSet βˆ…) β†’ (Β¬ p X2)) ∧ (Β¬ p X4))) β†’ (Β¬ set_of_pairs X4))) ∧ p X3)) β†’ (Β¬ p (f X2)) β†’ (βˆƒX3 : set, βˆƒX4 : set, (p (f βˆ…) ∧ (Β¬ p (f X4)))) β†’ (βˆ€X3 βŠ† f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…), βˆ€X4 : set, p X4)) β†’ (βˆƒX3 ∈ X2, βˆ€X4 : set, p X3))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMWRBm4wx131FBdkF5yx2k9f9S7QdhN777h)
((βˆ€X2 : set, (βˆƒX3 : set, ((βˆ€X4 : set, p X4 β†’ ((Β¬ p (binintersect βˆ… X3)) ∧ ((((Β¬ ordinal X4) ∧ (Β¬ p X4)) ∧ atleast6 (f X3)) ∧ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))) ∧ ((βˆ€X4 : set, (Β¬ (X3 = X2))) ∧ (βˆƒX4 ∈ f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)), ((((nat_p X4 ∧ ((((Β¬ atleast4 X3) ∧ (((p X2 β†’ (Β¬ p βˆ…)) β†’ atleast3 X4) β†’ (Β¬ p X3))) ∧ ((Β¬ atleast4 X4) ∧ ((Β¬ p X4) ∧ SNo (f X2)))) ∧ ((Β¬ TransSet X4) β†’ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) β†’ (((TransSet X3 β†’ (TransSet X3 ∧ (((Β¬ atleast6 βˆ…) ∧ ((SNo (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) ∧ (Β¬ p βˆ…)) ∧ atleast5 X3)) ∧ atleast2 X3))) ∧ ((atleast3 X2 β†’ setsum_p X4) β†’ (Β¬ (f X3 ∈ X4)))) ∧ (Β¬ atleast4 (Inj0 βˆ…))) β†’ p X3 β†’ ((((Β¬ atleast2 (f X4)) ∧ (Β¬ setsum_p X3)) β†’ (Β¬ TransSet X3)) ∧ atleast3 X2)) β†’ atleast2 X3) ∧ p X2))))) β†’ (Β¬ p X2)) ∧ (βˆƒX2 : set, ((Β¬ p X2) β†’ (βˆƒX3 : set, ((βˆƒX4 : set, ((X4 βŠ† X2) ∧ (((Β¬ p X4) β†’ atleast6 X2) β†’ atleast6 X4 β†’ exactly2 X4))) ∧ (βˆ€X4 βŠ† f X3, p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))))) β†’ (βˆƒX3 ∈ f (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)), βˆƒX4 : set, ((X4 βŠ† binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ (((((Β¬ exactly2 X4) β†’ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) X2))) β†’ atleast5 βˆ…) β†’ ((((Β¬ p X3) β†’ p X3 β†’ p X4) ∧ ordinal X2) ∧ (((Β¬ SNoLe βˆ… X3) β†’ (Β¬ SNo (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ p X2)))) ∧ ((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ ((Β¬ PNoLt_ (f X4) (Ξ»X5 : set β‡’ atleast5 X4) (Ξ»X5 : set β‡’ ((atleast3 X5 β†’ ((Β¬ exactly4 X4) β†’ (p X4 ∧ (Β¬ p X5))) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ (X4 = binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))) β†’ atleastp βˆ… X4)))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMS7mCxwiizTtY5Lwuzakkv4hGNCa11qfqv)
βˆƒX2 : set, ((βˆ€X3 : set, (βˆƒX4 : set, (Β¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) β†’ (βˆ€X4 ∈ f X2, ((Β¬ SNo (Inj0 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((((((atleast2 (f (SetAdjoin X3 X3)) ∧ ((Β¬ p (f X3)) β†’ p X3)) ∧ (set_of_pairs X3 ∧ (Β¬ atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ (exactly3 X4 ∧ p X4)) β†’ (((Β¬ exactly4 (f βˆ…)) β†’ (Β¬ p (f X4))) ∧ (Β¬ (f βˆ… βŠ† f X3)))) β†’ atleast3 X4) β†’ ((((Β¬ p (f X2)) ∧ ((((Β¬ equip X4 X3) ∧ (p X2 β†’ ((Β¬ exactly5 X3) β†’ ((Β¬ atleast2 X2) β†’ (Β¬ exactly4 X4) β†’ (p X4 ∧ (Β¬ p X4))) β†’ ((((Β¬ atleast5 X4) β†’ (p X4 ∧ (p X3 ∧ ((((((((Β¬ p (f X4)) ∧ ((atleast6 X3 β†’ (Β¬ atleast2 X4)) ∧ (p X3 β†’ (p (f (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (p βˆ… ∧ ((Β¬ p (f X3)) ∧ (Β¬ p X3)))) β†’ p (f X2)))) ∧ (Β¬ (f X3 βŠ† X4))) ∧ (Β¬ exactly2 βˆ…)) β†’ (Β¬ exactly2 X3)) β†’ (SNo βˆ… ∧ (Β¬ exactly3 X2))) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))))) β†’ (Β¬ atleast5 (f (f X3)))) ∧ (Β¬ p X3)) β†’ (Β¬ ordinal X3)) β†’ (Β¬ exactly5 X2))) β†’ (exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) ∧ (Β¬ p X3))) β†’ (Β¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…) ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) ∧ p X4) β†’ (exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ (atleast3 βˆ… β†’ ((((((((Β¬ p X2) ∧ ordinal X2) β†’ (Β¬ p (f X3)) β†’ ordinal βˆ… β†’ exactly4 X4) β†’ (Β¬ p X3)) ∧ ((Β¬ SNoEq_ X4 X3 (V_ (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ nat_p X2) β†’ nat_p (f X2))) β†’ p X4) β†’ (((Β¬ atleast6 X3) β†’ (setsum_p X4 ∧ (Β¬ p X3)) β†’ equip (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) X3) β†’ p (f (f (SNoElts_ X4)))) β†’ (Β¬ p X3) β†’ exactly5 X4) ∧ ((Β¬ ordinal X2) ∧ (Β¬ ordinal (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))))) β†’ ((Β¬ p X4) β†’ p βˆ…) β†’ exactly5 (f (f X3))) β†’ ordinal (f (f X4)))))) ∧ (βˆ€X3 βŠ† X2, exactly4 X3))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMPYNwhbQorzG2SfqPYGpcCnseRPBz2FXQS)
βˆ€X2 βŠ† UPair βˆ… (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…), βˆ€X3 βŠ† X2, (βˆƒX4 : set, p X4) β†’ ((βˆƒX4 : set, ((((atleast3 X2 ∧ (Β¬ ordinal (SetAdjoin (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) (f X3)))) ∧ (Β¬ p X4)) β†’ (Β¬ p X4)) ∧ (Β¬ exactly4 X3))) ∧ (βˆ€X4 : set, ((setsum_p X4 β†’ ((Β¬ p X3) ∧ (Β¬ p βˆ…))) ∧ p X3)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMbFAB9NWVD6oGWcY8UsmhPtC3SSiBtGKiL)
(βˆƒX2 : set, (Β¬ nat_p (f X2))) β†’ (Β¬ nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ (βˆƒX2 : set, ((p X2 ∧ (βˆ€X3 βŠ† X2, βˆƒX4 : set, ((((Β¬ set_of_pairs X2) β†’ (Β¬ exactly2 βˆ…)) β†’ ((Β¬ p X4) β†’ ((((Β¬ atleast6 X4) ∧ p X4) ∧ ((X3 βŠ† X4) β†’ exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ (p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ atleast3 X4) β†’ ((p X2 β†’ p βˆ…) ∧ p X4))))) β†’ (Β¬ p (f X3))) ∧ (exactly5 X3 β†’ (Β¬ p X4) β†’ (Β¬ atleast4 X3))))) ∧ (βˆ€X3 : set, ((βˆ€X4 ∈ ⋃ X2, p X4) ∧ ((βˆƒX4 ∈ X3, (Β¬ p X2)) ∧ (Β¬ ordinal (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))))))) β†’ (Β¬ nat_p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMN9nY682pCS7GXEeTiwzymtv28oF3XPdvz)
((βˆ€X2 βŠ† f (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))), βˆ€X3 βŠ† X2, (((p X2 β†’ (βˆƒX4 ∈ X2, (Β¬ equip X4 X3))) β†’ exactly3 (f (f X2))) ∧ (Β¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) ∧ (βˆƒX2 ∈ f (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)), βˆ€X3 βŠ† binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…), (Β¬ atleast6 (f βˆ…))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMQiZQ7WErxANZTYtiZwBDCJXwoZgBm3yDD)
βˆƒX2 : set, ((βˆ€X3 ∈ f (SNoElts_ (f (Unj X2))), p X3 β†’ (βˆ€X4 : set, (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ p X4))) ∧ ((βˆƒX3 : set, ((X3 βŠ† X2) ∧ (βˆƒX4 ∈ βˆ…, ordinal X3 β†’ (Β¬ p X2)))) ∧ (βˆƒX3 : set, βˆ€X4 ∈ X3, (Β¬ ordinal X4))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMXeHnkNWWwhnNEP5rQwxqewGcPEqVnoV4G)
βˆ€X2 βŠ† binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…), (βˆƒX3 : set, ((X3 βŠ† f X2) ∧ (βˆ€X4 βŠ† binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…), ((Β¬ setsum_p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ ((exactly4 (f X3) ∧ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ (βˆ… ∈ X3)) β†’ (Β¬ exactly3 X4) β†’ (Β¬ p (f X4)))) β†’ equip X4 X2))) β†’ (βˆ€X3 ∈ X2, βˆ€X4 βŠ† f X3, p X4 β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMN5Xm2eHAY3kLFjw3Q1cbEXhcSz862Hq1m)
((βˆ€X2 : set, (Β¬ p (f (f (⋃ X2))))) ∧ PNo_upc (Ξ»X2 : set β‡’ Ξ»X3 : set β†’ prop β‡’ (Β¬ p X2)) (Inj0 (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) (Ξ»X2 : set β‡’ βˆ€X3 βŠ† f (proj1 X2), βˆƒX4 : set, ((X4 βŠ† f X3) ∧ ((p X3 β†’ (Β¬ exactly5 X3)) β†’ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMKr4pTxDhvU9BLyvNhUV52MytFFAs73jti)
βˆ€X2 : set, ((βˆƒX3 ∈ X2, βˆƒX4 : set, exactly3 X2 β†’ ((p βˆ… β†’ (Β¬ atleast2 X2)) ∧ p X4)) ∧ (βˆƒX3 : set, βˆ€X4 βŠ† βˆ…, ((((Β¬ exactly5 (Inj1 (𝒫 (setminus (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))))) ∧ ((Β¬ p X3) β†’ exactly5 X3)) β†’ set_of_pairs X4) ∧ (((((Β¬ antisymmetric_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) β†’ (ordinal X5 β†’ (Β¬ exactly2 X4)) β†’ (p X6 ∧ ((Β¬ p X5) β†’ exactly3 X2)))) β†’ (Β¬ ordinal X4)) β†’ (((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ ((Β¬ SNo_ X4 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ p (SNoLev X3)))) ∧ (p X2 β†’ (Β¬ atleast3 X2)))) β†’ inj (f X4) (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) (Ξ»X5 : set β‡’ X4)) β†’ atleast6 (add_nat X3 X4))) β†’ SNo X3))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMHYFfuvw99w4ZqQa68ACxYUmkU5JcsvpS1)
(((βˆ€X2 βŠ† f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)), βˆ€X3 : set, tuple_p (f X3) X3) ∧ (βˆƒX2 : set, ((X2 βŠ† f (f (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) ∧ ((Β¬ atleast6 X2) β†’ (βˆƒX3 : set, ((βˆƒX4 : set, (Β¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ (βˆƒX4 : set, (Β¬ atleast2 X2)))))))) ∧ (βˆ€X2 : set, (βˆ€X3 : set, ((βˆƒX4 : set, ((X4 βŠ† binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (p X2 ∧ (Β¬ p (𝒫 X3))))) ∧ ((βˆ€X4 : set, ((Β¬ setsum_p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ ((p βˆ… β†’ atleast5 (f (f (f X2)))) ∧ (nat_p (UPair (SetAdjoin (⋃ X3) X4) X3) β†’ (exactly3 X3 ∧ (atleast6 X4 ∧ (Β¬ atleast6 (f X2)))))))) β†’ exactly5 βˆ…))) β†’ (βˆƒX3 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…, p (f (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMLkyyrUGS7QoSAs3uK2Y7e7AcQBAD7BT9d)
((Β¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (βˆƒX2 ∈ f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…), βˆƒX3 : set, βˆ€X4 : set, ((Β¬ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ ((Β¬ p X4) ∧ (((Β¬ p X2) β†’ (((((Β¬ exactly4 X2) β†’ SNo (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ p X4) ∧ ((exactly2 X3 β†’ exactly3 X3) β†’ ((((p βˆ… β†’ (Β¬ (βˆ… ∈ X3))) ∧ ((((atleast6 X2 ∧ (Β¬ ordinal (Inj0 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) ∧ (Β¬ atleast3 X4)) β†’ p X3) β†’ p (PSNo X3 (Ξ»X5 : set β‡’ (nat_p (f X5) β†’ (Β¬ p X3)) β†’ (Β¬ p X2))))) β†’ (Β¬ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ p βˆ…) β†’ p X4 β†’ ((Β¬ equip X4 X4) ∧ p X3) β†’ (Β¬ p (f X4)))) ∧ ((Β¬ exactly3 X4) ∧ ((Β¬ atleast6 X4) β†’ (exactly4 X2 ∧ (Β¬ p X2)) β†’ p X2)))) ∧ ((p (f (binunion X2 X3)) ∧ (Β¬ binop_on X2 (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ X6))) ∧ (Β¬ p X4))))) β†’ ((Β¬ exactly4 (f X3)) β†’ p X3) β†’ (Β¬ p X3)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMR5A1tuXLavQtpC1wAYtnk8gMxhSbckZVp)
(βˆ€X2 : set, βˆ€X3 : set, ((βˆ€X4 βŠ† X3, exactly2 X3) β†’ (βˆ€X4 : set, (((((Β¬ atleast3 X4) ∧ ((Β¬ setsum_p X2) β†’ (Β¬ ordinal X3))) β†’ TransSet βˆ…) β†’ (atleast2 (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ ordinal X4)) ∧ ((((f (f βˆ…) ∈ f (f X2)) β†’ (Β¬ p X2)) ∧ (((Β¬ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ (((p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ (Β¬ atleast6 (f X3))) β†’ p X2) ∧ ((((Β¬ p X4) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ p X4) β†’ (Β¬ p (f X4))))) ∧ (((Β¬ p X3) β†’ ((((((((p X4 ∧ ((((Β¬ p X3) ∧ (Β¬ p βˆ…)) β†’ TransSet X3) ∧ (((Β¬ p X4) β†’ ((Β¬ p X3) β†’ (Β¬ setsum_p X4) β†’ ordinal X3) β†’ (((Β¬ ordinal X3) β†’ ((((p X4 ∧ (exactly2 X2 ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) β†’ ((((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ atleast5 X4) β†’ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ ((((Β¬ p X2) β†’ (((Β¬ p βˆ…) β†’ ((((exactly2 (f X4) ∧ ((Β¬ p X3) ∧ ((atleast4 X2 β†’ (exactly2 (f X2) ∧ (((Β¬ (X4 ∈ X4)) ∧ p X3) β†’ (atleast2 X2 ∧ (p (f X2) β†’ (Β¬ p X4) β†’ ((p X3 ∧ (p X2 ∧ (Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) ∧ ordinal X3))))) β†’ (Β¬ atleast6 X4) β†’ (Β¬ exactly3 X4)) β†’ p X2 β†’ p (f (f X3))))) β†’ (((Β¬ p X2) ∧ p (⋃ (setprod (ordsucc X4) X3))) ∧ (Β¬ atleast3 (f X2)))) β†’ (Β¬ (X3 βŠ† X2))) ∧ ((((((((Β¬ p X4) β†’ p (Inj1 X3)) β†’ (Β¬ ordinal (f (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)))) β†’ ((Β¬ TransSet (f βˆ…)) ∧ ((Β¬ SNo (⋃ βˆ…)) ∧ p (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))))) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)) β†’ SNo X4 β†’ ((p (Inj1 X2) ∧ (Β¬ TransSet X3)) β†’ ordinal (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ ((p βˆ… β†’ nat_p X3) ∧ exactly2 X2)) ∧ (((Β¬ p βˆ…) ∧ p X2) β†’ setsum_p X4)) β†’ p (𝒫 X3)) β†’ (Β¬ p X3)))) ∧ ((((Β¬ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ (((Β¬ p βˆ…) β†’ (Β¬ ordinal X4)) ∧ (exactly5 X4 β†’ ((((p βˆ… β†’ (X4 ∈ X4)) ∧ (Β¬ exactly3 (f βˆ…))) β†’ (Β¬ PNoLt X2 (Ξ»X5 : set β‡’ ((Β¬ p X5) ∧ ((((((((Β¬ ordinal X4) ∧ ((Β¬ exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ ((PNoLt_ X4 (Ξ»X6 : set β‡’ ((((Β¬ atleast4 X6) ∧ (Β¬ atleast2 X6)) ∧ ordinal (f βˆ…)) ∧ ((((X4 ∈ Inj1 βˆ…) ∧ (((Β¬ p X6) β†’ (Β¬ atleast4 X5)) ∧ atleast4 X5)) ∧ atleast3 X6) ∧ (((((((Β¬ p X6) ∧ (Β¬ p X3)) β†’ (Β¬ p (V_ X5))) ∧ ((Β¬ exactly3 X6) β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ ((Β¬ p X5) ∧ ((p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ p X5) β†’ atleast4 X5)))) β†’ ((Β¬ p X6) ∧ nat_p X3)) ∧ (p X6 ∧ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ p X5))) β†’ (((X4 = X3) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ (p X5 β†’ p X5))) (Ξ»X6 : set β‡’ p X5) β†’ ((Β¬ TransSet (𝒫 X4)) ∧ ((((atleast3 X5 ∧ atleast6 X4) β†’ p X3 β†’ ((Β¬ p X4) ∧ (((((Β¬ p βˆ…) β†’ (Β¬ p X2)) ∧ (Β¬ p X3)) β†’ (p X5 ∧ (SNoLt X5 X3 β†’ ((Β¬ atleast6 X5) ∧ p X4)))) ∧ (((Β¬ p X5) β†’ (Β¬ p X4)) ∧ (Β¬ p X4))))) β†’ ((Β¬ p (Sing X4)) ∧ (Β¬ p βˆ…)) β†’ p X4) β†’ ((Β¬ p X4) ∧ (((Β¬ TransSet X4) ∧ (atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ (Β¬ p X3))) β†’ (Β¬ p (f X2)) β†’ p X4 β†’ ((Β¬ p X4) ∧ (Β¬ p X5))))))) ∧ exactly2 X3))) ∧ (((p (V_ βˆ…) ∧ (p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) ∧ ((Β¬ atleast3 X5) ∧ (p X4 ∧ ((Β¬ exactly3 X3) β†’ exactly3 X5))))) ∧ (Β¬ exactly2 X3)) β†’ (p (SNoLev X4) ∧ (((((Β¬ p X4) ∧ (setsum_p X5 ∧ (Β¬ set_of_pairs X5))) ∧ p X5) β†’ (((atleast3 X4 ∧ ordinal βˆ…) ∧ (exactly2 X5 ∧ (((p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ (((p X5 ∧ (Β¬ p X4)) ∧ (((Β¬ exactly3 X3) ∧ (Β¬ (βˆ… ∈ X3))) β†’ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) ∧ ((Β¬ p X2) β†’ (Β¬ symmetric_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ TransSet X7 β†’ exactly5 X7 β†’ (Β¬ SNo (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))))))) ∧ (((Β¬ p (SNoLev (setprod (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) X5))) ∧ ((TransSet X3 ∧ (exactly5 X5 ∧ ((Β¬ TransSet X4) β†’ exactly3 X5))) ∧ ((((((Β¬ p X4) ∧ (((Β¬ p X5) β†’ p X4) β†’ p X3)) β†’ (((Β¬ atleast4 X4) ∧ (((Β¬ exactly2 X4) ∧ (exactly5 βˆ… ∧ exactly2 X4)) β†’ (Β¬ PNoEq_ βˆ… (Ξ»X6 : set β‡’ ((p X6 ∧ (atleast3 X2 β†’ p X3)) ∧ (((((atleast2 X6 β†’ (Β¬ exactly3 X5)) ∧ (((((Β¬ nat_p X6) β†’ p X5 β†’ (((((SNo X5 β†’ (Β¬ atleast2 (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) β†’ (((Β¬ atleast5 X5) ∧ ((atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ ((TransSet βˆ… β†’ p X6) ∧ ((Β¬ atleast3 X6) ∧ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) β†’ (Β¬ p X5))) β†’ (Β¬ p X6)) β†’ (Β¬ ordinal X4) β†’ irreflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ ((exactly5 X8 ∧ (Β¬ SNo βˆ…)) ∧ ((nat_p X8 ∧ ((p X7 ∧ (Β¬ atleast2 X7)) β†’ (((Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) ∧ (Β¬ p X7)) ∧ (Β¬ p X7)))) β†’ p X8)) β†’ (Β¬ p X3)) β†’ (p X5 ∧ (TransSet (proj1 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (Β¬ exactly5 X5))) β†’ setsum_p (f βˆ…)) ∧ (Β¬ nat_p (𝒫 X5))) ∧ ((((atleast5 X6 β†’ p X5) β†’ (Β¬ atleast4 βˆ…)) ∧ (Β¬ p (binunion (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) (f X3)))) β†’ (Β¬ setsum_p X2) β†’ nat_p X6)) ∧ (Β¬ p X6))) ∧ (((exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (((atleast4 X3 β†’ p βˆ…) β†’ exactly5 X6) ∧ ((((((Β¬ exactly3 X5) β†’ exactly2 X5) ∧ (Β¬ p (SetAdjoin (ordsucc (f X6)) X6))) ∧ (atleast6 X6 β†’ (((Β¬ atleastp X6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ ((p X5 ∧ ((((atleast5 X6 ∧ (SNo X6 ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) ∧ ((exactly5 βˆ… β†’ (Β¬ p X5)) ∧ ((((((Β¬ exactly3 X6) ∧ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) β†’ ((p X6 ∧ (Β¬ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (ordinal X8 ∧ ((Β¬ p X8) β†’ (Β¬ p X8)))))) ∧ p (f X5)))) ∧ (Β¬ p X5)) β†’ (Β¬ atleast3 X3)) β†’ atleast2 βˆ…) ∧ ((p X4 ∧ (Β¬ p X3)) ∧ (Β¬ p X5))))) β†’ p X6 β†’ (Β¬ exactly3 X5)) β†’ (Β¬ p βˆ…))) ∧ (atleast4 X6 ∧ (Β¬ p X5)))) β†’ nat_p X5 β†’ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast3 X6) β†’ (Β¬ atleast6 X2))) ∧ ((Β¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ (Β¬ p X6))) β†’ (((Β¬ p X5) ∧ ((X6 ∈ X6) β†’ ((Β¬ exactly3 X5) ∧ p X5))) β†’ (Β¬ atleast4 (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ (Β¬ p X6) β†’ (atleast4 X5 ∧ ((Β¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ ((p X5 ∧ ((ordinal (f X6) β†’ p X5) ∧ (Β¬ nat_p X6))) ∧ ((((Β¬ p X6) ∧ (p X5 ∧ (p (f βˆ…) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) ∧ ((Β¬ p βˆ…) β†’ (Β¬ atleast5 X2) β†’ ((Β¬ setsum_p X3) ∧ p X5))) β†’ (Β¬ atleast2 X6)))))))) β†’ (Β¬ p X2)) β†’ (Β¬ bij X2 X6 (Ξ»X7 : set β‡’ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))) β†’ (Β¬ p X6) β†’ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) ∧ ((eqreln_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ p X2) ∧ (Β¬ p X6)) ∧ (Β¬ p X5)))) β†’ (Β¬ p X3)) ∧ (Β¬ p X5)) β†’ p (f X5)))) (Ξ»X6 : set β‡’ (Β¬ exactly2 X6))) β†’ ((Β¬ p X4) β†’ (Β¬ exactly3 X2) β†’ (atleast3 X3 β†’ ((Β¬ atleast2 X4) ∧ p (f X4))) β†’ ((((((Β¬ p X5) ∧ (atleast4 X5 ∧ (Β¬ p (In_rec_i (Ξ»X6 : set β‡’ Ξ»X7 : set β†’ set β‡’ 𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) X5)))) ∧ (Β¬ p X4)) ∧ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ p X5)) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) β†’ atleast6 βˆ…) β†’ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) ∧ ordinal X3))) ∧ (((Β¬ atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (((Β¬ (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ… ∈ X4)) ∧ (Β¬ ordinal X5)) ∧ (Β¬ p X3))) β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))) β†’ (((equip (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ… ∧ SNo X4) β†’ (Β¬ p X5)) ∧ ((Β¬ ordinal X5) ∧ (Β¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))) β†’ (Β¬ p βˆ…)) β†’ (Β¬ nat_p X4)))) ∧ (Β¬ p X5)))) ∧ p X3) ∧ (Β¬ SNo (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))) ∧ atleast2 X2)) ∧ (Β¬ p X3))))) ∧ (p X4 β†’ (Β¬ p (𝒫 X5)))) ∧ (Β¬ p (f X3))) ∧ (Β¬ p X3)) ∧ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ ((((Β¬ exactly2 X4) ∧ (Β¬ p X5)) ∧ TransSet βˆ…) ∧ p X5) β†’ (Β¬ p (𝒫 X3)))) β†’ (Β¬ p X3)) X2 (Ξ»X5 : set β‡’ (((Β¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ ((((((Β¬ exactly4 X5) β†’ (((Β¬ atleast4 X4) β†’ ((Β¬ set_of_pairs X5) ∧ (Β¬ p βˆ…)) β†’ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ p X3) β†’ ((Β¬ p X2) β†’ ((Β¬ atleast2 (f X3)) ∧ p X3)) β†’ per_i (Ξ»X6 : set β‡’ Ξ»X7 : set β‡’ (Β¬ atleast6 (ordsucc X7)))))) β†’ (Β¬ p X4) β†’ atleast3 X4) β†’ p X4) β†’ (Β¬ set_of_pairs X3)) β†’ ((p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ (X3 ∈ X3)) ∧ ((tuple_p (In_rec_i (Ξ»X6 : set β‡’ Ξ»X7 : set β†’ set β‡’ X6) X5) X3 ∧ atleast4 X5) ∧ p X4)))) ∧ (Β¬ p βˆ…))))) ∧ (Β¬ p X3))))) ∧ p X2) β†’ p X2))) ∧ ((Β¬ p X4) ∧ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ exactly2 X3 β†’ (Β¬ p X3)) β†’ atleast2 X4) β†’ p X4) β†’ (exactly3 (f X3) ∧ p (f X4)) β†’ (symmetric_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ reflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ (Β¬ p X2))) ∧ (((p X4 ∧ (p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) β†’ (Β¬ p X3))) ∧ (((p (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ p X4 β†’ (Β¬ setsum_p (f (V_ X2))) β†’ (Β¬ atleast6 X4)) β†’ ((Β¬ atleast2 X3) ∧ ((p X3 ∧ ((p βˆ… β†’ p (proj1 X4)) β†’ atleast2 X4)) β†’ setsum_p X3 β†’ setsum_p X3)) β†’ (((((Β¬ exactly4 X4) β†’ (Β¬ atleast5 X3) β†’ (exactly3 (f X3) β†’ ((Β¬ PNoLe X4 (Ξ»X5 : set β‡’ (Β¬ p (proj0 X4))) (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) (Ξ»X5 : set β‡’ ((Β¬ exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ p (ap X5 X4)))) ∧ (((Β¬ p X4) ∧ ((((Β¬ p (Inj0 X2)) β†’ (((Β¬ atleast6 X3) ∧ ((Β¬ p X3) ∧ exactly5 (𝒫 (f (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))))) ∧ atleast4 X3)) β†’ p X4 β†’ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (((Β¬ nat_p βˆ…) β†’ (Β¬ binop_on X6 (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ X7))) ∧ (Β¬ atleast4 X3)))) β†’ (Β¬ setsum_p X2))) ∧ (p X3 ∧ (Β¬ exactly5 X4))))) β†’ p X2) ∧ ((p (f X2) β†’ p X3 β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ (Β¬ p (f X3)))) β†’ ((Β¬ (f X4 ∈ setsum X4 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))) β†’ ((Β¬ p X4) ∧ ((((Β¬ atleast2 X3) β†’ (((Β¬ reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ p X2))) ∧ (X2 ∈ X4)) β†’ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ p X3) β†’ (Β¬ p X4) β†’ (Β¬ p X4)) β†’ (((Β¬ atleast6 X4) ∧ ((((atleast5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…) β†’ (Β¬ p X3)) β†’ p βˆ…) ∧ (((Β¬ p X4) β†’ (Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ ((((Β¬ p X3) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ exactly2 X3) ∧ p X4) β†’ atleast4 βˆ…) β†’ atleast6 X4 β†’ (Β¬ atleast2 X3))) ∧ (Β¬ p X4))) ∧ ((X4 ∈ X3) β†’ p (ordsucc βˆ…)))))) β†’ (Β¬ p X4)) ∧ exactly4 X4)) ∧ (Β¬ exactly4 X3))) ∧ ((((Β¬ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…) ∈ X3)) ∧ transitive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (TransSet X6 ∧ (((Β¬ atleast2 X5) ∧ (p X6 β†’ (p X4 ∧ (Β¬ p (f X6))))) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))))) β†’ ((Β¬ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ SNo (binintersect X3 X4) β†’ (Β¬ atleast2 βˆ…)) β†’ p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…))) β†’ ((atleast4 (f X3) ∧ (Β¬ p (f X2))) ∧ (((((((Β¬ SNo X2) β†’ exactly3 X2) β†’ (Β¬ p X3)) ∧ nat_p X4) ∧ (f X3 = X2)) β†’ (Β¬ nat_p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (Β¬ p (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))))))))) ∧ atleast6 X4)) β†’ (Β¬ exactly3 X4)))) ∧ (Β¬ atleast3 X3)) ∧ ((exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) ∧ (p X4 ∧ ((Β¬ p X3) β†’ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ p X2)))) ∧ p X3)) β†’ (p X4 ∧ (Β¬ p X4))) ∧ p X2) β†’ p βˆ…) β†’ (Β¬ atleast4 X3)) ∧ p (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) ∧ (((p βˆ… ∧ (((p X2 ∧ ((((Β¬ p (Inj0 X3)) β†’ (Β¬ p X3)) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) β†’ (Β¬ p X3))) ∧ ((p X2 β†’ (p X2 β†’ p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ ((((p X4 β†’ p (f X4)) β†’ (Β¬ exactly5 X3) β†’ (Β¬ p X2)) ∧ ((Β¬ SNo (f (f (f (f X3))))) ∧ atleast4 (f X3))) ∧ SNo X2)) ∧ atleast2 X3)) ∧ (p X2 β†’ atleast2 (f X4)))) β†’ p X4) ∧ (Β¬ (X2 ∈ X4)))))) ∧ (p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ p X4)))) β†’ (Β¬ atleast3 βˆ…))) β†’ (Β¬ p X2)) β†’ p (f (f (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMKA2Cv9xawaCKMwCS7swVSJygJnhnrnFvM)
exactly2 (f (f (f (𝒫 βˆ…)))) β†’ (βˆƒX2 : set, βˆƒX3 : set, (p βˆ… ∧ ((βˆ€X4 ∈ X2, ((((nat_p (f βˆ…) ∧ (((Β¬ p X3) β†’ ((((Β¬ p X3) β†’ exactly5 (Inj1 βˆ…) β†’ atleast3 (f (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) β†’ (Β¬ p X3) β†’ p X2 β†’ (Β¬ p X4)) ∧ p X3) β†’ (Β¬ ordinal X4)) β†’ (Β¬ p X4) β†’ (p X3 ∧ ((p X4 ∧ p (f X3)) ∧ ((p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ exactly3 X3 β†’ (Β¬ SNoLt X4 X4) β†’ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ… = f X4)) β†’ (Β¬ p X4)))) β†’ ((setsum_p X4 β†’ (p X2 ∧ ((Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ equip (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) X3))) ∧ (Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ (Β¬ ordinal βˆ…))) β†’ p X2) β†’ ((Β¬ p X2) ∧ (Β¬ p X2)) β†’ (Β¬ atleast5 X3)) ∧ (Β¬ atleast2 X2))) ∧ (βˆƒX4 : set, (Β¬ exactly1of3 (Β¬ p X2) (((Β¬ nat_p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ exactly4 (f X3)) β†’ (Β¬ exactly3 (f (add_nat X2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))))) (Β¬ atleast3 X2))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMRZRVqN93n2u6SgRpbGzgGCsrQEubJ8QGW)
βˆ€X2 βŠ† f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)), ((βˆƒX3 : set, (((βˆƒX4 : set, (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) ∧ (Β¬ exactly2 (⋃ (f X4))))) ∧ (βˆƒX4 : set, (p X4 ∧ p (Sing X4)))) ∧ (βˆƒX4 : set, ((p X4 β†’ (Β¬ p X2)) ∧ ((((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ p X2) ∧ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ ordinal βˆ…))))) β†’ (Β¬ nat_p X2)) β†’ (βˆƒX3 ∈ X2, (((βˆƒX4 : set, ((X4 βŠ† X3) ∧ (Β¬ transitive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ TransSet X5))))) β†’ (Β¬ exactly3 (f X3))) ∧ (βˆ€X4 : set, (((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ ((Β¬ exactly5 X3) ∧ p X4) β†’ tuple_p X4 X2) ∧ ((exactly3 X2 ∧ (PNo_downc (Ξ»X5 : set β‡’ Ξ»X6 : set β†’ prop β‡’ p X5) X2 (Ξ»X5 : set β‡’ p X2) β†’ p X3)) β†’ ((Β¬ p (f X2)) β†’ atleast2 X3) β†’ atleast6 X3)) β†’ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMYupy8MsyDDRR95cjVmwKNmdnenD3L7tiw)
(βˆ€X2 ∈ βˆ…, atleast4 X2) β†’ (βˆ€X2 : set, (βˆ€X3 ∈ X2, (βˆƒX4 ∈ f X3, (Β¬ set_of_pairs βˆ…)) β†’ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (βˆ€X4 : set, (p (f X3) ∧ (Β¬ p X4)) β†’ p X3 β†’ (((Β¬ p X4) ∧ ((Β¬ nat_p X4) β†’ exactly2 X2)) ∧ ((set_of_pairs X3 ∧ p βˆ…) ∧ ((Β¬ exactly5 X3) β†’ (Β¬ set_of_pairs X3)))))) β†’ ((βˆ€X3 : set, (βˆ€X4 : set, ((Β¬ p X2) ∧ ((Β¬ p X3) ∧ (atleast6 X3 ∧ exactly3 X4))) β†’ (Β¬ exactly2 X3)) β†’ (βˆ€X4 ∈ f X3, (((Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p βˆ…)) ∧ ((p X3 β†’ ((setsum X4 X2 = X4) ∧ ((Β¬ atleast5 X3) ∧ p (f (f X3))))) ∧ (atleast2 βˆ… β†’ (Β¬ SNo_ X2 X3)))))) ∧ (βˆ€X3 : set, (Β¬ p (f X3)) β†’ (βˆ€X4 : set, (Β¬ p X3) β†’ p X4))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMdYXtmXPAMFG8vmm7n6afRY3hw4MfDndjp)
((Β¬ SNo (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ (βˆ€X2 : set, p X2 β†’ (((βˆ€X3 ∈ X2, p X2) β†’ p X2) ∧ (βˆƒX3 : set, ((βˆƒX4 : set, ((((p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) β†’ p X4) ∧ (p (f X2) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (((Β¬ set_of_pairs X2) β†’ ((((Β¬ p X3) β†’ p X4) β†’ (Β¬ p X3)) ∧ p βˆ…)) β†’ ((Β¬ p X2) β†’ (Β¬ p X4)) β†’ (Β¬ SNo_ X3 βˆ…)) β†’ (Β¬ ordinal βˆ…)) ∧ (((Β¬ p X4) ∧ (atleast5 X3 β†’ p βˆ…)) β†’ (Β¬ atleast3 (f (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))))))) ∧ (βˆƒX4 : set, (Β¬ nat_p (f βˆ…)))))) β†’ (βˆƒX3 ∈ f X2, βˆƒX4 : set, ((Β¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ ((((((Β¬ p βˆ…) β†’ ((Β¬ setsum_p X4) ∧ (Β¬ setsum_p X2))) ∧ ((((Β¬ p X3) ∧ (Β¬ atleast5 X4)) β†’ (Β¬ exactly3 X4)) ∧ (((((Β¬ atleast6 X4) β†’ ((p X4 β†’ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ p X2) β†’ (p X3 ∧ ((Β¬ (X3 ∈ f X4)) ∧ (Β¬ atleast4 X4)))) β†’ (Β¬ atleast2 βˆ…) β†’ (Β¬ p X4)) β†’ (Β¬ p βˆ…) β†’ atleast5 X4) β†’ antisymmetric_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (Β¬ irreflexive_i (Ξ»X7 : set β‡’ Ξ»X8 : set β‡’ ((Β¬ p X7) ∧ (((((((atleast4 X8 ∧ ((Β¬ reflexive_i (Ξ»X9 : set β‡’ Ξ»X10 : set β‡’ ((Β¬ p X4) ∧ ((Β¬ ordinal X10) ∧ ((p X9 β†’ exactly2 X8) β†’ TransSet X3))))) ∧ (Β¬ setsum_p X2))) ∧ (((TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ (SNoLe (V_ X4) X8 β†’ (Β¬ nat_p X3) β†’ p βˆ…)) β†’ (p X7 β†’ trichotomous_or_i (Ξ»X9 : set β‡’ Ξ»X10 : set β‡’ ((Β¬ TransSet X9) ∧ (((((((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…) β†’ (((exactly4 X10 β†’ (p X10 ∧ p X6)) β†’ (Β¬ TransSet X5)) ∧ (Β¬ p βˆ…))) β†’ (p βˆ… β†’ SNoLe X8 (Inj0 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ ((((((Β¬ exactly4 X4) ∧ (p (Inj1 X9) ∧ (p (f X9) ∧ (Β¬ nat_p X6)))) β†’ (Β¬ p βˆ…) β†’ (Β¬ reflexive_i (Ξ»X11 : set β‡’ Ξ»X12 : set β‡’ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ (Β¬ p X10)) ∧ ((exactly4 X8 β†’ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))) ∧ (((Β¬ trichotomous_or_i (Ξ»X11 : set β‡’ Ξ»X12 : set β‡’ (Β¬ exactly5 X11))) ∧ (Β¬ exactly2 X9)) ∧ exactly3 X3)) ∧ p X6) ∧ ((p (f X5) β†’ set_of_pairs X2) β†’ (((((((Β¬ p X10) β†’ ((Β¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ (p X9 ∧ p X10))) ∧ p X9) β†’ ((exactly3 βˆ… ∧ ((Β¬ atleast6 X10) ∧ p βˆ…)) ∧ ((TransSet X9 β†’ p X10 β†’ ((((((p X10 β†’ ((p X10 ∧ (p X9 ∧ (Β¬ p X9))) β†’ (Β¬ p X8)) β†’ ((p X2 ∧ (Β¬ p X5)) ∧ (equip X10 X10 β†’ (Β¬ atleast6 X9))) β†’ (Β¬ TransSet X6)) ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ p X10) ∧ ((Β¬ p X7) ∧ (p X5 β†’ atleast4 X10))) ∧ (atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…) β†’ p X9)) β†’ ((p X5 ∧ p X10) ∧ ((atleast3 X10 ∧ ((Β¬ SNo X3) β†’ exactly4 X10)) β†’ ((setsum_p X9 ∧ ((((p X6 ∧ (Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ ((TransSet (ordsucc (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast3 X10)) ∧ (((exactly5 X7 ∧ ((Β¬ atleast5 X10) β†’ ((atleast5 X10 ∧ (atleast2 X9 ∧ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) ∧ p (SNoElts_ X3)) β†’ (((((atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ (((setsum_p X9 ∧ (Β¬ atleast3 X4)) ∧ p X6) β†’ (Β¬ p X10))) β†’ ((((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) ∧ p (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ (Β¬ p X7)) ∧ SNo X9)) β†’ (((set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) ∧ ((Β¬ p X4) ∧ ((Β¬ p X10) ∧ p X9))) β†’ (Β¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) ∧ (Β¬ p X9)) β†’ (Β¬ atleastp (𝒫 X9) X9)) ∧ (Β¬ p X9)) ∧ (Β¬ PNoLt_ X6 (Ξ»X11 : set β‡’ (Β¬ exactly5 X11)) (Ξ»X11 : set β‡’ atleast4 X11))))) β†’ ((Β¬ p X9) ∧ p X10) β†’ ((Β¬ reflexive_i (Ξ»X11 : set β‡’ Ξ»X12 : set β‡’ p X10)) ∧ p X9) β†’ p X10) ∧ (Β¬ exactly4 X9)))) β†’ ((p X2 ∧ (exactly5 X9 ∧ atleast3 X10)) ∧ ((Β¬ atleast6 (PSNo X10 (Ξ»X11 : set β‡’ ((Β¬ exactly3 X11) ∧ (((((Β¬ p X10) β†’ (((((Β¬ p (setminus βˆ… X8)) β†’ (Β¬ p (⋃ X10))) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ ((exactly4 X11 ∧ (Β¬ ordinal X6)) β†’ exactly5 X10) β†’ p X10 β†’ ordinal X7) ∧ (((p X11 β†’ (Β¬ exactly4 X9)) ∧ (Β¬ p X11)) β†’ (Β¬ ordinal (f (f βˆ…)))))) ∧ (((Β¬ ordinal (f X11)) ∧ exactly4 βˆ…) β†’ (Β¬ nat_p X10) β†’ (Β¬ p X10))) ∧ (TransSet X11 β†’ (((Β¬ exactly1of3 (atleast3 X11) (Β¬ p X3) (TransSet X9)) β†’ atleast2 (f (binrep X10 X11)) β†’ ((((Β¬ p X10) ∧ ((Β¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ ((((Β¬ exactly5 (combine_funcs X11 (f X11) (Ξ»X12 : set β‡’ binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (Ξ»X12 : set β‡’ X11) X11)) ∧ ((Β¬ exactly5 X6) ∧ ((Β¬ exactly3 X11) β†’ (exactly3 (Inj1 X11) ∧ (((Β¬ atleast4 X10) ∧ (Β¬ p X11)) β†’ (Β¬ p X5)))))) β†’ (Β¬ nat_p X10)) ∧ (Β¬ ordinal X10))) β†’ (Β¬ atleast5 X10)) β†’ ((Β¬ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ p X11))) β†’ setsum_p X10) β†’ (setsum_p (ordsucc X3) ∧ ((p X11 ∧ atleast2 X10) β†’ ((TransSet X3 β†’ (((((p X10 ∧ (atleast6 (setexp X11 X8) β†’ (Β¬ set_of_pairs X10) β†’ ((Β¬ p X11) ∧ exactly3 X11))) ∧ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (p (lam2 X3 (Ξ»X12 : set β‡’ X11) (Ξ»X12 : set β‡’ Ξ»X13 : set β‡’ X5)) ∧ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)))) β†’ (Β¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ (Β¬ atleast3 X11) β†’ exactly2 βˆ…) ∧ (((p X10 ∧ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ (Β¬ p X11)) ∧ ((((Β¬ atleast5 (f βˆ…)) β†’ (SNo (f X10) ∧ (Β¬ (X7 ∈ X11))) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) β†’ p X11) β†’ (Β¬ TransSet X2))))) ∧ p (In_rec_i (Ξ»X12 : set β‡’ Ξ»X13 : set β†’ set β‡’ X12) X8)))))) β†’ (Β¬ p X2)))))) β†’ (p (f X10) ∧ ((atleast6 X9 β†’ p X10) β†’ (Β¬ p X3)))))) ∧ (((Β¬ TransSet X4) β†’ ((((((p X6 ∧ atleast2 X10) β†’ ((Β¬ p X10) ∧ ((atleast2 X2 β†’ p X10) ∧ p X4))) β†’ (Β¬ reflexive_i (Ξ»X11 : set β‡’ Ξ»X12 : set β‡’ (p X12 ∧ p X11) β†’ ((((SNo X12 β†’ ((p X4 ∧ ((atleast5 X5 β†’ (Β¬ tuple_p X11 X3)) ∧ ((((Β¬ p X10) ∧ ((p X11 ∧ exactly3 X12) β†’ (((Β¬ (f X12 ∈ X10)) ∧ (((Β¬ p X11) ∧ ((((p X10 β†’ (p X11 ∧ (((((((Β¬ nat_p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) β†’ (Β¬ p X12)) β†’ (Β¬ exactly3 βˆ…)) ∧ atleast3 X8) β†’ ((((f X11 ∈ X7) ∧ p X11) ∧ ((((Β¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ atleast6 X11) ∧ (Β¬ exactly4 X6)) ∧ (p X11 ∧ ((((Β¬ atleast3 X9) β†’ p βˆ…) β†’ (Β¬ nat_p X11)) β†’ (Β¬ atleast5 X10))))) ∧ (Β¬ p X12))) β†’ (p X11 ∧ (((Β¬ ordinal X12) β†’ (Β¬ p X12)) ∧ nat_p (ordsucc X12)))) β†’ (TransSet X11 ∧ (SNoLev X6 ∈ X11)) β†’ exactly2 X11)) β†’ ((((((Β¬ p X12) ∧ ((exactly3 (ordsucc (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ exactly3 X11)) ∧ (Β¬ exactly5 βˆ…))) β†’ setsum_p X11 β†’ (Β¬ atleast6 X7)) β†’ atleast4 X10 β†’ p βˆ…) ∧ atleast5 X11) ∧ (p X12 β†’ ((atleast4 X12 ∧ (Β¬ set_of_pairs X12)) β†’ (Β¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) β†’ (atleast5 X11 ∧ (Β¬ p (Inj0 X12))) β†’ p X11))) ∧ (((Β¬ atleast6 X12) ∧ (Β¬ p X11)) ∧ (Β¬ atleast4 X11))) ∧ (exactly4 X9 β†’ exactly2 X11)) β†’ (((((Β¬ TransSet X4) ∧ (Β¬ exactly5 X11)) β†’ ((((((Β¬ p X12) ∧ atleast5 (famunion X12 (Ξ»X13 : set β‡’ X12))) β†’ ((((Β¬ p X11) ∧ ((Β¬ atleast5 X11) β†’ (Β¬ p X8))) ∧ (p X11 β†’ (Β¬ p X12))) ∧ (((((((Β¬ p X10) ∧ exactly2 X2) ∧ ((Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) β†’ ((atleast4 X2 ∧ stricttotalorder_i (Ξ»X13 : set β‡’ Ξ»X14 : set β‡’ atleast4 X8 β†’ (((((Β¬ p X13) β†’ ((Β¬ atleast2 X9) β†’ p X14) β†’ ((Β¬ (βˆ… ∈ X8)) ∧ nat_p X11)) ∧ (Β¬ p X13)) ∧ (exactly5 βˆ… ∧ ((Β¬ p (setsum (mul_nat X5 X10) (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ p X13))) ∧ ((Β¬ p X9) ∧ p X14)))) β†’ p X7) β†’ (Β¬ p X12))) ∧ (Β¬ atleast6 X11)) β†’ (((Β¬ p X12) ∧ (Β¬ exactly5 βˆ…)) ∧ (p X12 β†’ ((Β¬ p X10) ∧ ((((((Β¬ p βˆ…) β†’ ((Β¬ exactly2 X12) ∧ ((((((((p X12 ∧ (exactly2 X12 β†’ p X11)) ∧ p X3) β†’ p X3 β†’ (Β¬ atleast3 X12)) ∧ p X3) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ atleast2 X8) β†’ ((exactly5 X11 β†’ (X12 ∈ X11)) ∧ (Β¬ atleast2 X11))) ∧ (exactly5 X11 β†’ (Β¬ symmetric_i (Ξ»X13 : set β‡’ Ξ»X14 : set β‡’ ((Β¬ exactly5 X6) ∧ ((Β¬ nat_p X13) β†’ ((Β¬ SNoEq_ X12 X13 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ atleast6 X6)))) β†’ (setsum_p (setsum (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ ((Β¬ atleast2 βˆ…) β†’ nat_p X14)))))))) ∧ (Β¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ ((Β¬ exactly5 X11) β†’ (Β¬ p X12))) ∧ ((Β¬ set_of_pairs X11) ∧ atleast3 X9)) ∧ (((((Β¬ p X7) ∧ ((Β¬ nat_p X3) ∧ (Β¬ atleast2 X12))) ∧ p X11) β†’ p βˆ…) β†’ atleast5 X12)))))) β†’ (((Β¬ p X12) ∧ ((Β¬ atleast3 (f X11)) β†’ (Β¬ nat_p X12))) ∧ p X11)) β†’ (((Β¬ atleast5 βˆ…) ∧ (((exactly5 X11 β†’ nat_p X12) β†’ p X12 β†’ atleast5 (f (SNoLev X11))) ∧ (Β¬ p X8))) ∧ exactly4 X10))) β†’ p X12) ∧ (((Β¬ atleast3 X12) ∧ (((p X12 β†’ ((Β¬ exactly4 X12) ∧ (Β¬ p X11)) β†’ p X12) β†’ (SNo X11 ∧ (Β¬ ordinal X12))) ∧ (exactly4 (Inj1 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)))) β†’ p X2)) ∧ (((p X11 ∧ (Β¬ p X11)) β†’ (p X2 ∧ (Β¬ exactly4 X12)) β†’ (exactly4 X12 ∧ ((((Β¬ p X12) β†’ exactly3 X12) β†’ (exactly3 X11 ∧ (p X12 β†’ (((((((Β¬ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ exactly2 X12) β†’ ((Β¬ p X11) ∧ p X10)) ∧ (Β¬ p X6)) ∧ (Β¬ exactly5 X7)) ∧ ((((Β¬ set_of_pairs X12) ∧ (p X12 β†’ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) ∧ (((atleast4 βˆ… ∧ p βˆ…) ∧ ordinal X11) ∧ (Β¬ p X11))) β†’ (((((((Β¬ exactly4 X12) β†’ (Β¬ SNo_ (𝒫 X7) X11)) ∧ (Β¬ p X12)) β†’ setsum_p (SetAdjoin X11 (f (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) β†’ (Β¬ p X12)) β†’ (Β¬ p X4)) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) ∧ (((Β¬ antisymmetric_i (Ξ»X13 : set β‡’ Ξ»X14 : set β‡’ (Β¬ p X12))) ∧ atleast4 X12) ∧ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))))) β†’ atleast6 βˆ…))) β†’ p X11 β†’ setsum_p X11)) ∧ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) ∧ (((((Β¬ p X11) ∧ ((Β¬ p (Sing X12)) β†’ ((Β¬ atleast3 X12) ∧ (Β¬ exactly4 X12)))) ∧ p X12) β†’ transitive_i (Ξ»X13 : set β‡’ Ξ»X14 : set β‡’ ((((Β¬ p X14) β†’ (Β¬ reflexive_i (Ξ»X15 : set β‡’ Ξ»X16 : set β‡’ p (Inj1 X15))) β†’ nat_p X14) β†’ set_of_pairs X3) ∧ ((atleast2 X12 ∧ (((Β¬ p X13) ∧ (((((Β¬ p X5) ∧ (p X12 β†’ ordinal βˆ…)) β†’ (Β¬ set_of_pairs X13)) ∧ (p X13 β†’ (Β¬ exactly5 X13))) β†’ (atleast5 X13 ∧ (Β¬ p (binunion X6 X13))) β†’ ((Β¬ p X2) β†’ ((Β¬ p (Unj X12)) ∧ p X2)) β†’ (Β¬ p X14) β†’ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ (Β¬ atleast3 X13))) ∧ (Β¬ setsum_p X13))))) β†’ SNo X12 β†’ nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))))) ∧ (Β¬ p X11))) ∧ p (V_ X8)))) β†’ (Β¬ p X11)) ∧ (((Β¬ equip X3 βˆ…) ∧ (p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))) β†’ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) ∧ nat_p X11)))) β†’ (Β¬ exactly3 X11)) β†’ (atleast3 X6 ∧ (((trichotomous_or_i (Ξ»X13 : set β‡’ Ξ»X14 : set β‡’ (Β¬ atleast4 X10) β†’ (((TransSet X13 β†’ (atleast6 X14 ∧ ((p X13 ∧ (((((((Β¬ exactly2 X13) ∧ (Β¬ p X14)) β†’ ((Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (Β¬ atleast3 X4)) β†’ (atleast4 X13 ∧ (Β¬ p X13))) β†’ (Β¬ atleast6 X14) β†’ atleast3 X14) ∧ (((Β¬ exactly5 X13) β†’ p X14) β†’ (Β¬ p X13) β†’ (Β¬ p X14))) β†’ ((((Β¬ atleast3 X13) β†’ p X13) β†’ (Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ (Β¬ atleast4 X13)) β†’ (exactly3 X13 ∧ (Β¬ p X14))) ∧ ((Β¬ atleast6 βˆ…) β†’ (Β¬ exactly3 (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))) ∧ (p βˆ… ∧ (((((X14 = X9) β†’ p X11) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)))) β†’ ((p X14 ∧ p X13) ∧ exactly2 X13)) β†’ exactly2 X3)))) β†’ (Β¬ equip X13 X13)) ∧ ((exactly2 X10 ∧ (Β¬ p X10)) ∧ ((((p (f X13) β†’ p X10) β†’ (Β¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) ∧ (p (Sing (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))) ∧ (((Β¬ atleast5 X13) ∧ ((Β¬ p X13) β†’ p X13)) ∧ (Β¬ p X13)))) ∧ (Β¬ p X4)))) ∧ (exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) β†’ p X8))) ∧ (Β¬ exactly4 βˆ…)) β†’ (((Β¬ (X12 ∈ βˆ…)) ∧ (p X12 ∧ (SNo_ X12 X12 β†’ (Β¬ set_of_pairs X11)))) ∧ ((nat_p X8 β†’ set_of_pairs (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))))) β†’ exactly3 βˆ…)) β†’ atleast5 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) β†’ exactly3 X6) β†’ (Β¬ exactly4 X12)) ∧ ((Β¬ atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ p X11))))) β†’ p X5) ∧ ((Β¬ exactly5 X7) β†’ ((p X10 β†’ ((Β¬ p X10) ∧ exactly3 X9)) β†’ (Β¬ atleast6 X10) β†’ (((Β¬ ordinal X10) ∧ ((Β¬ p X10) ∧ (Β¬ ordinal X7))) ∧ (Β¬ p X3))) β†’ ((Β¬ p βˆ…) ∧ ((exactly3 (f X10) β†’ atleast5 X10 β†’ (((X2 ∈ binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ p X10) ∧ ((atleast4 X10 β†’ (((((((Β¬ p X9) ∧ (Β¬ atleast6 X8)) ∧ (p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ p X9)) β†’ (Β¬ exactly3 X10)) β†’ p X9) ∧ ((Β¬ (X10 ∈ X10)) ∧ (Β¬ per_i (Ξ»X11 : set β‡’ Ξ»X12 : set β‡’ p X11 β†’ TransSet X11)))) ∧ atleast4 X10) β†’ ((Β¬ p X10) β†’ (Β¬ exactly2 X9)) β†’ ((Β¬ p X4) ∧ p X4)) β†’ ((((exactly5 X6 β†’ p X9) β†’ (((Β¬ exactly2 X10) ∧ p X10) ∧ (Β¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ p X9) β†’ p X10 β†’ ((Β¬ nat_p (Inj0 βˆ…)) ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)))) ∧ (p X5 ∧ exactly2 βˆ…))))) β†’ p βˆ…)))) β†’ (((Β¬ exactly5 X10) ∧ p (Inj0 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ ((ordinal X2 β†’ (Β¬ atleast5 X3)) ∧ (exactly2 X10 ∧ (Β¬ p X9))))) β†’ (Β¬ tuple_p (Inj1 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) X10)) β†’ ((Β¬ TransSet X9) ∧ ((((Β¬ atleast6 X10) ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)) β†’ ((Β¬ SNo X9) ∧ (Β¬ p X10))) β†’ (Β¬ p X10)))))) ∧ ((Β¬ p X8) β†’ (exactly2 X9 β†’ (p X10 ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) β†’ p βˆ… β†’ (((Β¬ nat_p X10) β†’ (p X7 ∧ atleast2 X2)) ∧ ((atleast3 X9 ∧ (Β¬ p (Sing X6))) ∧ SNoLt X7 X9)) β†’ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…) ∧ ((Β¬ TransSet X7) ∧ (p (f X6) β†’ (Β¬ ordinal X10)))) β†’ ((((p X9 ∧ ((p X2 ∧ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…)) β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) ∧ ((((Β¬ atleast5 X9) ∧ p X4) β†’ (ordinal X9 ∧ ((Β¬ p X9) ∧ (TransSet (Unj X10) ∧ (Β¬ p X10))))) ∧ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) β†’ atleast6 (proj0 X10) β†’ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ (Β¬ p X10)))))) β†’ (Β¬ atleast3 X10) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ SNoLt X10 βˆ…) ∧ ((p X10 β†’ (Β¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ (Β¬ p X9))))) ∧ (Β¬ atleast5 X10)) ∧ ordinal X9) β†’ nat_p X2) β†’ (p X10 ∧ ((p (lam2 X9 (Ξ»X11 : set β‡’ X2) (Ξ»X11 : set β‡’ Ξ»X12 : set β‡’ X11)) β†’ atleast5 βˆ… β†’ (Β¬ p X3)) β†’ ((atleast6 X10 ∧ ((((Β¬ p X9) β†’ ((((Β¬ atleast5 X10) ∧ (Β¬ p X7)) ∧ (atleast3 X6 ∧ (p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) ∧ ((Β¬ p X9) ∧ exactly4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))) ∧ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…))) β†’ (TransSet X9 ∧ (((Β¬ equip X9 X8) β†’ atleast3 X9) β†’ ((Β¬ exactly3 X3) ∧ (Β¬ equip (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) X7)) β†’ p X10))) β†’ PNoLt (Inj1 X10) (Ξ»X11 : set β‡’ (((Β¬ p βˆ…) ∧ ((Β¬ atleast2 X3) β†’ (Β¬ p X11))) ∧ (((Β¬ atleast4 X10) β†’ (Β¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))) β†’ exactly3 (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))))) β†’ ((p X10 ∧ p X11) ∧ ((atleast6 X10 β†’ SNoLt X11 X5) β†’ ((exactly2 X11 ∧ ((nat_p X10 β†’ ((p X9 ∧ ((((Β¬ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)))) β†’ (((((Β¬ SNo X10) ∧ (p X11 ∧ (Β¬ p βˆ…))) β†’ atleast4 X4) ∧ ((ordinal X10 β†’ p X11) ∧ (Β¬ p X11))) ∧ (p βˆ… β†’ (Β¬ atleast3 βˆ…))) β†’ (ordinal X11 β†’ p (combine_funcs (𝒫 (f X2)) X10 (Ξ»X12 : set β‡’ f X2) (Ξ»X12 : set β‡’ X11) X11)) β†’ ((Β¬ ordinal X11) β†’ atleast2 X4) β†’ atleast3 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))) β†’ ((Β¬ p X11) β†’ p X11) β†’ (atleast4 X11 ∧ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) ∧ p X11)) ∧ TransSet X11) β†’ nat_p X11) β†’ ((Β¬ atleast6 X4) ∧ (Β¬ SNo X11)))) ∧ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) β†’ (((p X11 β†’ (Β¬ atleast3 X8) β†’ ((((Β¬ p X11) ∧ ((Β¬ SNo_ X7 X11) β†’ (Β¬ p X11))) ∧ nat_p X10) ∧ ordinal X7)) ∧ p X11) β†’ ((Β¬ p X10) ∧ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) β†’ exactly4 X11) X10 (Ξ»X11 : set β‡’ (Β¬ p X10)))) ∧ ((SNo X10 ∧ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))) ∧ (Β¬ p X10))))))) β†’ exactly3 X9) ∧ p X9)))) β†’ (((Β¬ exactly5 X7) ∧ ((Β¬ p X8) ∧ (Β¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) βˆ…)))) ∧ (Β¬ p X3)) β†’ exactly4 X3) β†’ (Β¬ p X2))) β†’ (Β¬ TransSet X8) β†’ p (f X8)) ∧ ((((SNoLt X7 X8 β†’ p X7) ∧ (p X8 β†’ p X7)) β†’ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) β†’ p X4 β†’ ((Β¬ ordinal X8) ∧ ((Β¬ p X7) ∧ (Β¬ exactly4 X8))) β†’ (Β¬ p X7))) ∧ ((atleast4 βˆ… β†’ atleast3 X2) ∧ (Β¬ exactly4 X3))) ∧ ordinal (ap X7 (Sep X5 (Ξ»X9 : set β‡’ p X8)))) β†’ set_of_pairs X4)) β†’ ((Β¬ p X7) ∧ TransSet X7))))))) ∧ p (f (Inj1 X3))) ∧ (((p X3 ∧ (TransSet X4 β†’ ((p X4 ∧ (Β¬ exactly4 X3)) ∧ (p X4 β†’ (Β¬ p X4))))) ∧ (((Β¬ exactly2 X2) β†’ exactly2 X3) β†’ p X3)) β†’ p βˆ…)) β†’ ((atleast5 X2 β†’ atleast2 X3) ∧ ((Β¬ p X4) β†’ ((p X2 β†’ ((p X4 β†’ p X3) ∧ (Β¬ PNoLe X3 (Ξ»X5 : set β‡’ setsum_p X4 β†’ ((Β¬ p X2) ∧ (Β¬ set_of_pairs X4))) X3 (Ξ»X5 : set β‡’ (Β¬ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))))) ∧ (((nat_p βˆ… β†’ p X3) β†’ ((((Β¬ SNo (Pi (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (Ξ»X5 : set β‡’ f X5))) β†’ (((((atleast3 X2 ∧ p X4) ∧ (((((p X4 ∧ atleast2 X2) ∧ (Β¬ p X4)) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ ((((((((Β¬ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) ∧ (Β¬ atleast6 X2)) β†’ p (f X3)) ∧ (p X3 ∧ (((Β¬ (X3 ∈ X3)) ∧ (((p X4 β†’ ((atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) ∧ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…)) βˆ…)) ∧ ((Β¬ exactly5 X3) ∧ (Β¬ p X3)))) ∧ ((Β¬ ordinal X3) ∧ (p X3 β†’ p (f (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))))) ∧ (((exactly2 X2 ∧ (Β¬ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) β†’ (p X3 β†’ p X4) β†’ (setsum_p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) ∧ (Β¬ p X3)) β†’ strictpartialorder_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ (((Β¬ p X5) β†’ (Β¬ exactly4 βˆ…)) ∧ ((p X6 β†’ p X6) ∧ ((Β¬ p X6) β†’ (Β¬ p X3)))))) ∧ (Β¬ p βˆ…)))) ∧ exactly2 X4))) ∧ (X4 ∈ X4)) β†’ ((((((Β¬ atleast6 X4) ∧ (SNo X3 β†’ p X4)) ∧ (atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…) β†’ p X3)) ∧ (((Β¬ ordinal (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))))) ∧ TransSet X4) β†’ atleast4 X3)) β†’ (Β¬ p X3)) ∧ (((p βˆ… ∧ p X2) ∧ ((nat_p X2 β†’ atleast5 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ p X3)) ∧ (((Β¬ exactly3 X3) ∧ (p X2 ∧ ((Β¬ atleast4 (f X4)) ∧ (((exactly5 X3 β†’ (Β¬ p X4)) β†’ (X2 ∈ X3)) β†’ (Β¬ p X3))))) ∧ (Β¬ p (f X2)))))) ∧ ((((atleast3 βˆ… β†’ (((Β¬ p (𝒫 (𝒫 (𝒫 (𝒫 βˆ…))))) ∧ (Β¬ p X2)) ∧ p X3)) ∧ (((Β¬ p βˆ…) ∧ ((Β¬ p βˆ…) β†’ exactly2 X3)) ∧ (((((((p X4 ∧ ((((((Β¬ atleast6 (f X3)) β†’ (((Β¬ p X4) β†’ atleast3 X4) ∧ (atleast2 X2 ∧ nat_p X3))) β†’ setsum_p X3) β†’ (Β¬ p X3) β†’ (((X3 βŠ† SNoElts_ X4) ∧ atleast5 X3) ∧ ((Β¬ p X3) ∧ (exactly5 X4 β†’ p βˆ…)))) ∧ exactly5 βˆ…) β†’ (Β¬ p X4))) ∧ (Β¬ p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…))) ∧ ((((ordinal (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ p (Unj (f βˆ…))) β†’ exactly5 X4) ∧ (p X3 ∧ p X2)) ∧ p X3)) ∧ ((p X3 ∧ ((((Β¬ p X2) ∧ atleast3 (f X3)) β†’ (Β¬ exactly3 (f X3))) β†’ (Β¬ p (f (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))))))) β†’ (p X3 ∧ (Β¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))))) ∧ set_of_pairs (f (f X4))) β†’ (Β¬ nat_p X2) β†’ p X3) ∧ ((((Β¬ p (f X4)) ∧ (Β¬ exactly2 X3)) β†’ p X3) β†’ p (f X2))))) β†’ atleast3 βˆ…) ∧ (Β¬ SNo (Sing (ap X3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))))) β†’ SNo (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ p (f (f (f (f X4))))) β†’ (Β¬ TransSet X4)) ∧ (Β¬ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) ∧ p (f (nat_primrec X3 (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ f X6) (f (V_ X4))))) ∧ (atleast3 X4 ∧ (((p X3 β†’ (Β¬ p X3)) ∧ p (f (f X4))) ∧ (Β¬ exactly4 X4))))) β†’ (p X3 ∧ ((Β¬ p X3) β†’ (Β¬ nat_p X2))))))))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMMFtGyGTNMk889pZKyUJYQZzsaqqmawSwg)
βˆ€X2 : set, ((βˆ€X3 : set, ((βˆ€X4 : set, (((((exactly4 X2 β†’ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) ∧ setsum_p X4)) β†’ (Β¬ SNo (𝒫 βˆ…))) ∧ (Β¬ exactly2 X4)) ∧ nat_p X3) β†’ (Β¬ atleast5 X3)) β†’ p βˆ…) ∧ (((βˆƒX4 : set, (p X3 ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…)))) β†’ nat_p X2) β†’ (βˆ€X4 ∈ X2, (Β¬ p X3) β†’ SNo X4 β†’ (Β¬ exactly4 (f X3)) β†’ (Β¬ exactly2 X3)))) β†’ (βˆ€X4 : set, (Β¬ exactly4 X4) β†’ ((p (f X3) β†’ (((p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) β†’ ordinal X4) β†’ (Β¬ p X4) β†’ (reflexive_i (Ξ»X5 : set β‡’ Ξ»X6 : set β‡’ ((Β¬ atleast3 X4) ∧ ((exactly4 X6 ∧ (((Β¬ atleast5 (Inj0 X5)) ∧ ((Β¬ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) β†’ ((nat_p X5 ∧ (Β¬ exactly3 X2)) ∧ (X6 ∈ 𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…))))) β†’ (((Β¬ p X6) β†’ (Β¬ exactly5 X6)) ∧ (((Β¬ exactly4 X5) β†’ p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) ∧ (p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) ∧ ((Β¬ p βˆ…) ∧ exactly2 X6)))))) ∧ atleast2 X5))) ∧ (Β¬ p X4))) ∧ p (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))) β†’ (Β¬ exactly4 X2)) β†’ (Β¬ (X4 βŠ† X3)))) ∧ (βˆ€X3 βŠ† X2, (Β¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…)))))) β†’ (βˆ€X3 : set, (βˆƒX4 : set, ((Β¬ p X3) ∧ (Β¬ atleast2 X3))) β†’ (βˆ€X4 βŠ† X3, ((SNo X4 β†’ (Β¬ exactly3 X2)) ∧ (((Β¬ exactly2 X4) β†’ p (f X3)) ∧ (exactly4 X3 β†’ (SNo X2 ∧ (Β¬ atleast5 X3))))) β†’ (((p (binunion X4 (f X3)) ∧ ((Β¬ p X4) ∧ exactly5 X2)) ∧ p (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)))) ∧ p X4)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMTUsGrWzeccXTbyyUzkKmmiSfaVo5uxPqe)
βˆƒX2 ∈ f (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))), (atleast4 X2 ∧ (p X2 ∧ (((βˆƒX3 : set, ((βˆƒX4 : set, (Β¬ atleast3 X3)) ∧ (βˆ€X4 βŠ† f (f (f (proj1 X3))), (Β¬ p (f X3))))) ∧ (Β¬ atleast4 X2)) β†’ ordinal (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (βˆƒX3 : set, ((βˆƒX4 : set, ((X4 βŠ† X3) ∧ ((Β¬ p (setminus X2 (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…))) β†’ (((Β¬ exactly3 βˆ…) β†’ ((((Β¬ p βˆ…) β†’ ((atleast3 (f X4) ∧ ((p X4 ∧ TransSet (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…)) β†’ (exactly2 X2 ∧ exactly4 X3) β†’ (atleast2 X2 ∧ p X2))) ∧ (Β¬ p X3))) ∧ TransSet (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ p X3)) ∧ (Β¬ exactly2 X2)) β†’ (Β¬ p X4)))) ∧ (βˆƒX4 : set, ((X4 βŠ† f (f βˆ…)) ∧ ((nat_p (f X3) β†’ (Β¬ tuple_p X2 X4)) ∧ (Β¬ atleast6 (f (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)))))))) β†’ (βˆ€X4 : set, atleast2 βˆ…)))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMaLEyJMWDQUQRFkPhdoAxazekiUHV2WC4t)
βˆ€X2 βŠ† binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…), ((TransSet X2 β†’ (βˆ€X3 : set, (βˆƒX4 : set, ((X4 βŠ† X3) ∧ p X3)) β†’ (Β¬ p X2))) ∧ (βˆ€X3 ∈ f X2, βˆ€X4 : set, p (ordsucc (f X2)) β†’ (Β¬ p X2)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMWsN7FWSTcbHovdb3W8kfuXMabiMyDDHyW)
βˆ€X2 βŠ† binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…, ((βˆ€X3 : set, βˆ€X4 ∈ f X3, (TransSet X3 β†’ p (binrep (𝒫 (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ ((Β¬ atleast4 X4) β†’ (Β¬ p X2)) β†’ (Β¬ p X4)) ∧ (Β¬ atleast5 X2)) β†’ (βˆƒX3 : set, ((βˆ€X4 : set, (Β¬ p X2)) ∧ (βˆƒX4 ∈ X2, ((nat_p (f X3) ∧ p X3) ∧ ((Β¬ setsum_p X4) ∧ (Β¬ p (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…)))))) β†’ p X3)))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMXpWDH8Spmj88rU8K6h4MynCuZGsWMAJ95)
βˆƒX2 : set, (((βˆ€X3 βŠ† βˆ…, βˆ€X4 ∈ X2, ((p X2 ∧ (p X2 ∧ ((Β¬ p (Inj0 X2)) ∧ (Β¬ p (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 (𝒫 βˆ…))))))) ∧ atleast5 X2)) ∧ (βˆƒX3 : set, ((X3 βŠ† X2) ∧ (Β¬ p X3)))) ∧ (((βˆ€X3 : set, (βˆ€X4 : set, nat_p X3 β†’ (Β¬ set_of_pairs X4)) β†’ p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (βˆƒX3 : set, ((βˆ€X4 ∈ X3, nat_p X2 β†’ p X3) ∧ ((βˆƒX4 : set, ((X4 βŠ† X2) ∧ (atleast3 X3 β†’ (Β¬ p X2) β†’ ((Β¬ p (f βˆ…)) ∧ p (f X3))))) β†’ (Β¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…))) β†’ p X3)))) β†’ (βˆ€X3 : set, (βˆ€X4 : set, (proj1 X3 ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…)) β†’ (Β¬ p (f X3)))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMSZWxUyR3R3h76vnctsXCSgLs8qMQZorny)
βˆƒX2 : set, ((βˆƒX3 : set, ((X3 βŠ† X2) ∧ (p X2 β†’ p X2))) ∧ (βˆƒX3 ∈ X2, ((βˆ€X4 ∈ 𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…), (set_of_pairs X4 ∧ ((Β¬ p (f X3)) ∧ (exactly3 X4 ∧ (p (⋃ X3) ∧ (Β¬ set_of_pairs X4)))))) ∧ (p X2 β†’ (ordinal X3 ∧ ((βˆƒX4 : set, ((X4 βŠ† X2) ∧ (Β¬ nat_p βˆ…))) β†’ exactly4 (ap X2 X3)))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMd6bJuWGgZmC7HjWbFMFsgcazgDXJobEJ4)
p (f (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 βˆ…))) β†’ (βˆ€X2 : set, ((Β¬ p X2) β†’ (Β¬ p X2)) β†’ (βˆ€X3 βŠ† X2, (((βˆ€X4 : set, ((p X4 ∧ ((((Β¬ p X2) β†’ p (f (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) βˆ…))) ∧ (Β¬ p (f X4))) ∧ (p X2 ∧ (Β¬ p (f X2))))) ∧ (Β¬ p X3))) β†’ (βˆ€X4 : set, ((p (f βˆ…) β†’ p X4) ∧ (Β¬ nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…)) βˆ…))))) ∧ ((Β¬ (X3 ∈ X2)) ∧ ((p (f X2) β†’ (βˆƒX4 : set, (Β¬ p X3))) ∧ ((βˆ€X4 : set, (Β¬ SNo_ X3 βˆ…)) ∧ (βˆ€X4 ∈ X2, (Β¬ TransSet X3))))))))
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMF84KaVzeZrMbADgLAdqNF2o3NvUwwzNgo)
βˆ€X2 ∈ f (f (f (setexp (famunion (SNoLev βˆ…) (Ξ»X3 : set β‡’ X3)) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))))), βˆ€X3 βŠ† X2, (βˆƒX4 : set, ((X4 βŠ† binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 βˆ…)))) (𝒫 βˆ…)) βˆ…) ∧ ((Β¬ p X4) ∧ (Β¬ exactly5 βˆ…)))) β†’ (Β¬ p X3)
Proof:
Proof not loaded.
Theorem. (conj_Random2_TMH2Va5g3nUe3rUAGVJEe6UCZxmxh7WUNmV)
(βˆƒX2 : set, ((βˆƒX3 : set, (p (f (binrep (𝒫 (𝒫 (𝒫 βˆ…))) (𝒫 βˆ…))) ∧ (Β¬ p (f X2)))) ∧ (βˆƒX3 : set, ((X3 βŠ† X2) ∧ (Β¬ TransSet X3))))) β†’ (atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 βˆ…)) βˆ…)) (𝒫 (𝒫 βˆ…))) βˆ…) ∧ (βˆƒX2 : set, ((X2 βŠ† f (f βˆ…)) ∧ p X2)))
Proof:
Proof not loaded.
End of Section Random2