Beginning of Section Random1
Theorem. (conj_Random1_TMQEe9FjmdtA77CJm8oxVjytEWYiCJos42z)
∀X0, ∀X1V_ , ((∃X2 ∈ X1, ∀X3X0, (∃X4 ∈ X3, ordinal X3)((∀X4X3, atleast4 X2)(∃X4 : set, ((SNo X1(((exactly4 X4(¬ exactly3 X3))atleast4 X4)(((¬ equip X1 X1)nat_p X3)(¬ atleast5 ))))atleast2 X3)))(¬ setsum_p X2))(∃X2 : set, (TransSet X1(∀X3X2, setsum_p X3(∀X4X2, (atleast6 X4((((¬ ordinal X3)atleast6 X3(¬ exactly3 X2))exactly3 X2)(¬ atleast4 X0))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMdoKBqRnr4o7BYZoP6j6d4JPMkydEKKA3F)
∃X0 : set, ((∀X1 : set, (∃X2 : set, ((∀X3 : set, (¬ TransSet ))(∀X3 : set, (¬ exactly4 X0)(∀X4X2, ordinal X3atleast5 X3))))(∃X2 : set, ∃X3 : set, (¬ TransSet X0)(∃X4 : set, ((X4 X1)(exactly3 X2(¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))))))(∃X1 : set, ((X1 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(∀X2 : set, (∀X3X1, ∃X4 : set, ((X4 X0)atleast5 X1))(∃X3 : set, ∀X4X3, (¬ totalorder_i (λX5 : setλX6 : set(exactly3 X6atleast3 X4)))(((¬ nat_p X1)((¬ TransSet X4)(¬ atleast3 X3)))((¬ nat_p X4)atleast6 X3)))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMH4ZacEkoR1PKiEftwQYVDcNKBwmTu9Msn)
∃X0 : set, ((X0 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))(∃X1 : set, ((∀X2X1, ∀X3 : set, (∃X4 : set, ((X4 setsum X0)((nat_p X2(¬ nat_p ))((¬ tuple_p X3 X4)((reflexive_i (λX5 : setλX6 : set(¬ nat_p X6))exactly3 X3)(¬ exactly3 X3)((SNoLt X3 X2nat_p X3)((atleast6 X3((nat_p X3atleast3 X2)(TransSet X3exactly2 X2)))exactly5 X3)))))))(∃X4 : set, ((X4 X3)(¬ nat_p X4)))(∃X4 : set, (X2 X2)atleast4 X4((((¬ tuple_p X3 X3)(¬ atleast3 ))(¬ atleast4 X2))(¬ exactly5 X0))))(∃X2 : set, ((X2 X1)((∀X3 : set, (¬ nat_p X3))(¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 ))) ))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMNEa7dj5GTMAMRKgDFwhDUijDxdCcgJHbt)
∀X0 : set, (∀X1 : set, exactly5 X0(∃X2 : set, ((∀X3SNoLev X2, (¬ atleast5 X1)(∀X4 : set, ((((strictpartialorder_i (λX5 : setλX6 : setSNoLe X4 X6)(¬ exactly4 (𝒫 X3)))(((((¬ atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))(atleast3 X3ordinal X4))(¬ atleast4 (𝒫 (binrep (𝒫 (𝒫 )) ))))((((((¬ exactly2 X2)(exactly5 (PSNo X2 (λX5 : set(¬ set_of_pairs )(¬ reflexive_i (λX6 : setλX7 : set(¬ SNo_ X7 )))))(¬ atleast4 X3)))(¬ atleast6 X3))(exactly5 X4(TransSet X2(¬ exactly2 X0))))(((¬ atleast4 (binintersect X3 X4))PNo_upc (λX5 : setλX6 : setprop(atleast6 X3X6 X5)) X3 (λX5 : set(¬ exactly4 X3)))nat_p X4))(¬ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))(exactly3 (¬ setsum_p X4))))((¬ set_of_pairs X4)(¬ atleast5 X4)))set_of_pairs (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))(∀X3binrep X2 X0, atleast4 X2(¬ exactly4 X2)))))(∀X1 : set, exactly2 X1(∀X2 : set, (∀X3X2, ((∃X4 ∈ Sing X3, (¬ atleast2 X1))atleast6 X3)(∀X4ordsucc X1, (¬ atleast5 X4)))(∃X3 : set, exactly2 X2(¬ SNoEq_ X1 X1 X2))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMXTV4Fw4XHL9DUv41yYzCoLRAefmmx8ohs)
∃X0 : set, ∃X1 : set, ((X1 𝒫 (𝒫 (𝒫 (𝒫 ))))(exactly4 X0(∃X2 ∈ X0, exactly3 X1(∃X3 : set, ((∃X4 : set, (nat_p X3((¬ (X3 X4))(¬ atleast6 X4))))((∃X4 ∈ X1, atleast5 X4)((((∃X4 : set, (inj X2 X4 (λX5 : setX4)(¬ set_of_pairs X4)))(¬ ordinal ))(¬ setsum_p ))(∀X4 X2, atleast2 X4))))))((∀X2 : set, ∀X3 : set, (¬ equip X2 X3)(∀X4 : set, (¬ TransSet X3)))(∃X2 : set, ∃X3 : set, ∀X4mul_nat X2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ), (¬ atleast6 X3)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMj5ARG9BXR3XTjwFRDiUnbZ57NDYvUCGL)
∀X0 : set, ∀X1X0, ∀X2X1, ∀X3X0, (∀X4 : set, atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(¬ exactly5 X3))(∃X4 : set, (((((¬ SNo (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))reflexive_i (λX5 : setλX6 : set(¬ set_of_pairs (V_ X0))))((((((¬ atleast5 X3)(¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))atleast6 X4(¬ TransSet (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))((((((¬ reflexive_i (λX5 : setλX6 : set((¬ TransSet X0)((((((atleast4 (((((((¬ exactly3 X6)(((¬ exactly5 X5)((¬ nat_p X5)nat_p X3)(¬ atleast6 X5))((((¬ nat_p X2)(((exactly3 X6(atleast6 X5(ordinal X0TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(¬ exactly4 (setsum X6 X0)))))atleast6 X6)atleast2 X6))TransSet X5)(atleast4 X0(Inj0 X5 setexp X5 X0)))))(TransSet (binrep (𝒫 (𝒫 (𝒫 ))) )(((¬ exactly2 X6)(((X0 = X2)(¬ (X0 X5))((atleast4 X6(¬ exactly3 X0))(((X0 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(((¬ atleast4 (SNoLev X6))(¬ reflexive_i (λX7 : setλX8 : set((SNo X4(¬ atleast3 X7))(¬ TransSet X2))atleast4 X7))(SNoLt X3 X3(atleast2 X0exactly4 X1)))(¬ atleast6 X6)))((((¬ TransSet X0)((exactly2 (Inj1 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(atleastp X5 X0(PNoEq_ X5 (λX7 : setatleast6 X6) (λX7 : set(((¬ TransSet )(¬ atleast3 X0))exactly2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))(¬ atleast3 X6))(¬ exactly5 X5)exactly5 X6((¬ exactly5 X6)(¬ exactly2 X0)))))(¬ exactly2 X0)atleast5 X0))(nat_p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )nat_p X6)(¬ atleast3 X4))(¬ SNo_ X5 X6)))))exactly4 X5)(setsum_p X6(((¬ exactly2 X5)((((¬ atleast2 X6)(X5 = X0))(¬ atleast6 X3))(atleast5 (SNoLe (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )((¬ atleast4 )(exactly3 X1(¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))))(¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(¬ ordinal X5)))))exactly2 X4)))(PNo_upc (λX7 : setλX8 : setprop(¬ X8 X0)((¬ atleast4 X6)X8 X7)((((¬ X8 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))((¬ X8 X6)atleast4 X2))X8 X6)atleast5 X6)(¬ X8 (𝒫 (𝒫 (𝒫 (𝒫 )))))) X2 (λX7 : set(¬ tuple_p X6 (𝒫 (binrep (𝒫 (𝒫 )) )))(X3 X7))(¬ (X6 X6))))))(((exactly5 X6exactly3 (SNoElts_ X5))exactly3 X5)(¬ exactly2 (nat_primrec X6 (λX7 : setλX8 : setbinrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) X6))))(((¬ ordinal X5)atleast6 )atleast5 X1))atleast3 X6)ordinal X5))(¬ SNo_ (binrep (𝒫 (𝒫 (𝒫 ))) ) X0))exactly5 X1)(¬ atleast2 X5))(¬ exactly2 X6))(¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))(¬ ordinal X1)(((¬ exactly3 X5)(((¬ ordinal X0)exactly5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ atleast6 X4)))((¬ ordinal X5)((((atleast4 (((¬ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))exactly3 X5(SNo X5(((((¬ nat_p (𝒫 X6))(¬ exactly2 X6))(¬ atleast6 X0))(set_of_pairs X0(¬ exactly3 X5)))(¬ TransSet X5))))(¬ setsum_p X2)))((¬ atleast2 X6)(¬ SNo (ap X6 X6))))(¬ atleast6 X2))(¬ atleast2 X6))))))((((((¬ exactly5 X4)((ordinal X4set_of_pairs X3)atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))((¬ setsum_p X1)(¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(((((((¬ nat_p X3)(¬ exactly3 X4))(¬ SNo X4))((¬ atleast5 X4)(¬ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))exactly5 X1)(¬ inj (λX5 : setX0)))atleast5 X3))TransSet X0)( X4))(¬ atleast5 (𝒫 (𝒫 (𝒫 (𝒫 ))))))(¬ (X3 X4)))((equip X4(¬ exactly2 X3))((((atleast4 (((((((¬ exactly1of2 (TransSet X2) ((¬ atleast5 X1)(¬ SNo X0)(¬ exactly3 X1)((¬ exactly4 X4)set_of_pairs X2)))exactly5 X2)(TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))(¬ set_of_pairs X4)))(¬ atleast6 X0))(¬ setsum_p X3))atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))((atleast3 X4(¬ atleast3 X2))ordinal X0)))nat_p X0)(¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))exactly4 )((¬ atleast4 X3)(¬ exactly3 X3)))(¬ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))exactly4 (famunion X4 (λX5 : setX4)))(¬ reflexive_i (λX5 : setλX6 : set((((exactly2 X5(¬ (X6 X6)))((¬ (X5 = X5))(¬ tuple_p X2 X5)))(¬ atleast6 X5))(atleast4 X4SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))))))atleast6 (V_ X1))nat_p X3))atleast5 X3)(ordinal X2(((atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(¬ nat_p (V_ X3)))atleast2 X4(TransSet ordinal (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ atleast3 X1))(((X3 X3)(¬ exactly3 (V_ X4))((¬ atleast6 X4)(nat_p X2(¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))))((exactly4 X4((((ordinal X3(X4 X1))exactly4 X0)(TransSet X4(¬ SNo X2)))bij X4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ) (λX5 : setbinrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))(((¬ atleast3 X4)(¬ atleast2 X2))(exactly2 X2nat_p X1))))))atleast3 X4(exactly3 SNo_ X1 X1)((¬ atleast6 X3)atleast5 X2))(¬ atleast2 )(atleast2 (Inj0 X1)(¬ ordinal X3))(¬ ordinal X2)))exactly3 X1)(((setsum_p (𝒫 )(¬ TransSet X3))((¬ (X2 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(exactly2 X0(¬ exactly2 X3))))((exactly4 X4exactly2 (𝒫 (𝒫 (𝒫 (𝒫 )))))((¬ exactly3 X4)SNo X3)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMZjzw8x5Z73f1PcAbVmsQLBdguh5331NWw)
∀X0 : set, (∃X1 : set, ((X1 X0)(((¬ atleast5 X0)((∀X2X1, ∃X3 : set, (∀X4 : set, atleast2 X2(¬ PNoLt X0 (λX5 : set((atleast2 X3atleast2 X2)(atleast6 X0SNoEq_ X4 X1 X1))) X1 (λX5 : setordinal X0(¬ atleast3 X5))))(∃X4 ∈ X2, SNo_ (setminus X4 X4) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))(∀X2 : set, ∀X3, ∀X4X0, atleast4 (binrep (𝒫 (𝒫 (𝒫 ))) ))))(∀X2X1, ∀X3 : set, (¬ bij X3 ( X1) (λX4 : setX3))((∀X4binunion X3 X3, (¬ exactly3 )(¬ symmetric_i (λX5 : setλX6 : set(¬ atleast5 X6))))(∃X4 : set, (¬ exactly2 X4)))(atleast4 X1atleast3 )(¬ ordinal X0)))))(∀X1X0, (atleast5 X1(∀X2 : set, (∀X3 : set, ∃X4 : set, ((X4 X3)(¬ setsum_p (𝒫 X3))))ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))(∃X2 ∈ 𝒫 (binrep (𝒫 (𝒫 )) ), ∃X3 : set, ((X3 )((exactly3 X2(∀X4 : set, (¬ set_of_pairs X4)TransSet (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(∃X4 : set, exactly2 X3)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMFFathu6TBSjmpNX4gtNvq7gUX6UzeGuwJ)
∃X0 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) , ∀X1 : set, (¬ bij X1 (λX2 : setX0))(∃X2 ∈ X1, ((∀X3 : set, ((∀X4 : set, (¬ TransSet X4))(∃X4 : set, ((ordinal X4(¬ exactly3 X2))atleast2 X4)))(∃X4 : set, (¬ atleast4 X3))(∃X4 : set, ((¬ exactly3 X4)((¬ TransSet X2)((((((¬ exactly2 )((atleastp X4 (binrep (𝒫 (𝒫 (𝒫 ))) )SNo_ (binrep (𝒫 (𝒫 (𝒫 ))) ) X1)(((((TransSet (SetAdjoin (binrep (𝒫 (𝒫 (𝒫 ))) ) X2)((¬ atleast5 X4)(¬ atleast6 X3)))SNoLe (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ) X1)(¬ atleast6 ))((ordinal X0((¬ atleast4 X4)(((¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))(¬ nat_p ))(¬ ordinal X3))(((((((atleast2 X3(¬ ordinal X4))((((¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(¬ TransSet X2))TransSet X2)((¬ setsum_p X0)(¬ exactly5 X0))))SNo_ X4 X4)(¬ PNoEq_ X2 (λX5 : setexactly2 X4) (λX5 : setatleast2 )))atleast5 (𝒫 (𝒫 (𝒫 (𝒫 )))))(((¬ atleast2 X3)(¬ exactly2 X3))(((¬ exactly4 X4)(¬ exactly3 X4))exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))TransSet (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))))((¬ transitive_i (λX5 : setλX6 : setset_of_pairs ))(¬ SNo X3))))((¬ atleast3 X0)((¬ ordinal X3)atleast6 X4)))))(X3 binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ atleast4 X3))(¬ exactly2 X3))TransSet X4)))))(((∀X3 : set, ((∀X4 : set, exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(∀X4binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )), exactly3 (proj0 (ordsucc X4)))))(((∀X3 : set, (∃X4 : set, ((X4 X2)partialorder_i (λX5 : setλX6 : setordinal X0)))(∃X4 : set, ((X4 X2)exactly2 (binrep (𝒫 (𝒫 (𝒫 ))) ))))(¬ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))(((∀X3 : set, (∃X4 ∈ 𝒫 (𝒫 (𝒫 (𝒫 ))), (((¬ atleast2 X4)((atleast5 X0(¬ setsum_p X3))(¬ set_of_pairs X3)))(per_i (λX5 : setλX6 : setexactly5 X3)(¬ atleast3 X3))))(∀X4 : set, ((((¬ atleast6 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))atleast4 X3(¬ exactly2 )nat_p X4)(¬ (X3 X2)))exactly5 X3)))(∃X3 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 )) )) , ∃X4 : set, ((¬ atleast3 (ordsucc X4))((¬ atleast6 X3)(atleast4 X3(¬ nat_p X4))))((¬ SNo X3)(((¬ set_of_pairs X2)((ordinal X1atleast6 X2)((¬ SNoLe X4 X1)(¬ exactly3 X3))))(X2 )))exactly2 X4))((∃X3 : set, ((X3 X2)atleast5 X3))((∀X3 : set, exactly5 (setexp X3 X0)(∀X4X1, atleast3 ))atleast4 (binunion (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ) (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))))))(∀X3 : set, (∃X4 ∈ X3, (¬ atleast6 X2))((TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))atleast6 X3(¬ (X1 = X2)))(¬ exactly3 ))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMQMg2kXf9ajAA64RMWejZiByGaq16JZjec)
∃X0 : set, ((X0 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(∃X1 : set, ∀X2 : set, (∃X3 : set, ((X3 X0)(¬ setsum_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))(∀X3X1, ∃X4 ∈ X1, ((¬ TransSet X3)(¬ ordinal ))eqreln_i (λX5 : setλX6 : setexactly5 X5))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMT6GyM8a3pd6cjcxix5N31bct2iVwg6AGo)
∀X0 : set, ∃X1 ∈ X0, ∀X2 : set, (¬ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))(∃X3 ∈ X2, ∀X4binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) , (¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))((symmetric_i (λX5 : setλX6 : set(¬ exactly5 (𝒫 (𝒫 (𝒫 (𝒫 ))))))(¬ SNo_ X4 X4))((¬ atleast6 ( X4))(¬ symmetric_i (λX5 : setλX6 : set(¬ atleast2 X4)nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )nat_p X0)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMc9p14P2JPeE9w1Ut7EY4nunuv6QvgYyiq)
∀X0 : set, ∀X1 : set, (((∃X2 ∈ X1, ∀X3 : set, (∀X4 : set, atleast4 X1)(∀X4 : set, exactly4 X3))(∃X2 : set, (((((∃X3 ∈ X2, ∃X4 : set, atleast3 )(¬ nat_p X2))(X1 ))(∀X3X2, PNoEq_ X2 (λX4 : set(¬ atleast2 X0)(¬ atleast4 X4)) (λX4 : set(¬ atleast6 X1))))set_of_pairs X2)))ordinal X1)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMzQ9L9zvDmcxKHCRUNmc5E4fikdNpQabt)
∃X0 : set, ((X0 setsum (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))) )(∀X1X0, ∀X2X1, ∀X3 : set, (∃X4 : set, ((¬ ordinal X0)(atleast3 X0(((¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))nat_p X3)(¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))))))(∃X4 ∈ X2, (¬ exactly5 X4))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMQ6BwNPr6YbEkiJYpkGnYcrbBM8ZiqS2b)
∃X0 : set, ((X0 binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(∃X1 ∈ 𝒫 (binrep (𝒫 (𝒫 )) ), ((atleast6 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(∀X2binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) , ∀X3 : set, (∃X4 : set, (exactly2 (binunion (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ) X1)(¬ atleast5 (Pi X2 (λX5 : setX5)))))(∀X4 : set, (¬ ordinal X2))))((∃X2 ∈ X1, ∃X3 : set, ((∃X4 : set, ((((¬ exactly3 X3)(((¬ setsum_p X4)set_of_pairs X3)(X3 X3))(exactly3 exactly5 X2))atleast2 X2)atleast5 X4))(¬ exactly5 X3)))(¬ setsum_p X0)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMSMwB2rQK8zU3VYWzTHVTwfVkQDB6KRUPH)
∀X0 : set, ∀X1𝒫 (𝒫 (𝒫 (𝒫 ))), ∀X2 : set, exactly1of3 ((¬ exactly2 X0)(¬ TransSet (𝒫 (𝒫 (𝒫 (𝒫 )))))) ((∀X3 : set, ( X3)(∃X4 ∈ X0, atleastp X1 (ordsucc X3)))(∀X3 : set, ((∃X4 ∈ X0, ((¬ ordinal ( X4))equip X3)(atleast3 X3atleast5 X0)(exactly5 X4((¬ atleast4 X3)((((TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(¬ SNo X4))(atleast2 X2((((reflexive_i (λX5 : setλX6 : set(¬ (𝒫 (binrep (𝒫 (𝒫 )) ) = X0)))SNo X3)(¬ exactly2 X3))exactly2 X1)((((¬ atleast3 X4)atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(exactly2 X4(atleast3 X2TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))))((¬ exactly2 X3)exactly4 X4)))))((¬ ordinal X2)(¬ atleast3 X3)))(¬ atleast4 X2)))))setsum_p X2)(((∀X4X0, (((¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))atleast4 X4)exactly2 (𝒫 X2)))(∃X4 ∈ X3, exactly4 X3))(∀X4X0, (¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))))) (∃X3 : set, ((¬ (X0 X2))((((X3 )set_of_pairs X2)(∃X4 ∈ proj1 X3, (¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))(¬ atleast6 ))(∀X4, (¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMWLU34YkyCYKsjFr2a6ViPZr1Fnb7vyNid)
∀X0 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ), ∃X1 : set, ((X1 𝒫 (𝒫 (𝒫 (𝒫 ))))(atleast5 X1(¬ reflexive_i (λX2 : setλX3 : set(∀X4 : set, ((SNoElts_ X3 = )(¬ exactly2 X4)))(∃X4 ∈ X0, (¬ nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMTw4ZySVFz6L3ptJFjfApKNczeWZVVnPX6)
∀X0binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )), ∀X1 : set, ((∀X2X1, (¬ atleast5 X1))atleast4 X1)(∀X2X0, ∃X3 : set, ((X3 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(∃X4 : set, ((X4 X2)(atleast6 X3equip X3 X1)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMRt5v89TYM3NEb9rg2LAUDmKB47XoRMovU)
∀X0 : set, (∃X1 : set, ((X1 )(∃X2 : set, ((X2 )reflexive_i (λX3 : setλX4 : set(¬ atleast5 ))))))(∀X1 : set, (∃X2 : set, ((X2 X1)(∀X3 : set, (∃X4 ∈ X1, exactly5 X2exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(∃X4 : set, (( X4)((((¬ SNoEq_ X4 X4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))((¬ set_of_pairs X3)(ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(¬ atleast5 X1))nat_p X4))((¬ SNo (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(TransSet (Repl X3 (λX5 : setX5))binop_on X2 (λX5 : setλX6 : setbinrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )exactly3 X4)))(¬ stricttotalorder_i (λX5 : setλX6 : setatleast3 ))))))))(∃X2 : set, ((((¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))((∀X3X2, (∃X4 : set, ((¬ TransSet X3)(¬ set_of_pairs X4)))(∀X4X2, ((¬ atleast2 X4)exactly5 X4)))(∃X3 : set, (∀X4 : set, SNoLt X3 X4(X1 X2))(∀X4X2, exactly5 X4atleast5 X2)exactly2 X3(∃X4 ∈ X3, ((atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))(nat_p X4exactly3 X0))((¬ set_of_pairs X3)(¬ atleast3 (lam2 (Sing X4) (λX5 : setX4) (λX5 : setλX6 : setX5)))))))))((∀X3proj1 X1, ((∃X4 ∈ X3, (¬ exactly5 X4))(∀X4 : set, set_of_pairs X4)))((∀X3X1, ∃X4 : set, ((X4 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )atleast3 (ordsucc X1)))(∃X3 ∈ X0, ∃X4 : set, (exactly4 X1(((¬ ordinal X4)(X3 X3)(¬ exactly5 X3))setsum_p ( )))))))((∃X3 ∈ , (∃X4 : set, ((¬ exactly2 X4)(¬ TransSet X3)))(∃X4 ∈ X3, (¬ atleast5 X3)))(∃X3 ∈ 𝒫 (Inj1 X1), ∃X4 ∈ X2, (¬ atleast4 (setsum X2 X4)))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMQQ31YUpcVhV3rkqnbTiPz9W1VZYee6M3F)
∃X0 : set, ∃X1 : set, ((X1 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))(∃X2 : set, ((∃X3 : set, ((X3 Inj0 X2)(∃X4 : set, ((X4 X1)(¬ atleast2 X4)))))(∃X3 : set, ((¬ nat_p X2)(∃X4 : set, ((X3 X4)(¬ setsum_p X1))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMP2f75JQo596LCr2DLo34nSJ3zCmYi8otw)
∀X0, ∃X1 : set, (nat_p X1(∃X2 : set, ((∃X3 ∈ X0, ((¬ set_of_pairs X1)((∃X4 : set, ((X4 X2)((SNoLe X3 X4(¬ SNoEq_ X2 X2 X3))stricttotalorder_i (λX5 : setλX6 : set((¬ SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(¬ atleast6 X5)(((¬ atleast6 X5)((((((¬ exactly5 X6)(X5 If_i ((¬ reflexive_i (λX7 : setλX8 : set(¬ equip X1 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))atleastp X7 X2(((¬ atleast3 X7)(¬ ordinal X7)(((¬ atleast3 X7)(¬ ordinal X7))((¬ exactly4 X3)exactly3 X6)))(X7 X7))))((¬ atleast5 X6)(¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))) X5 X6))(¬ exactly5 X6))(¬ TransSet X5))(¬ atleast2 X5))(((((¬ exactly2 X0)atleast6 X6)ordinal X6)(¬ exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))(¬ atleast2 X0)))(¬ atleast2 ))atleast4 X6)(¬ per_i (λX7 : setλX8 : set((exactly2 X8(¬ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))((atleast3 X1(((¬ SNoLe X7 X8)(X7 X2))exactly5 X8))((X8 binrep (𝒫 (𝒫 (𝒫 ))) )(¬ atleast3 (ordsucc X7))))))))(¬ TransSet (ordsucc X5))))))(∃X4 ∈ X3, per_i (λX5 : setλX6 : set((¬ set_of_pairs X4)(¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))))))))((((((∃X3 : set, ((∃X4 : set, ((¬ atleast5 X4)(¬ exactly5 X3)))((∀X4X3, (¬ exactly3 X2))(∀X4 : set, atleast3 X4))))(∀X3, ∀X4X2, (¬ atleast6 X4)))ordinal X0)(∀X3X1, ∀X4X1, (((¬ exactly3 X3)(exactly4 X2((¬ SNo_ X1 X3)(exactly2 X4(exactly3 X0(¬ exactly3 X0))))))((((ordinal X3((atleast5 X3(¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) )))(((((¬ exactly2 X1)(((¬ atleast4 X0)nat_p X0)((X2 binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )atleast6 X4)))(((¬ atleast6 X0)(¬ exactly5 ))atleast4 X4((¬ atleast4 X3)(((exactly2 X3(¬ exactly2 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))setsum_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(exactly5 (¬ TransSet X3))))))atleast2 X4)(¬ exactly4 X3))))(((((nat_p X2((((¬ TransSet X4)nat_p X3)(¬ SNo X0))atleast4 X3))(exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )exactly2 X4))atleast2 X4)(((ordinal X2(((¬ ordinal X2)(¬ nat_p X3))((¬ exactly2 X3)(¬ atleast5 X4))))((((exactly2 X2exactly2 X4)(¬ atleast5 X3))(((¬ exactly2 X4)((¬ partialorder_i (λX5 : setλX6 : set(¬ atleast3 X6)))((¬ atleast4 X4)nat_p X4)))(¬ SNoLe X3)))(((¬ SNo X2)((¬ exactly5 X0)(atleast5 X4nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ) X2))))((nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))((nat_p X4((((exactly2 X4(¬ exactly3 X2))(¬ atleast5 (Sing X3)))((¬ atleast5 X4)atleast4 (setminus X3 X3))(((¬ ordinal X3)(¬ exactly4 X4))nat_p X4))per_i (λX5 : setλX6 : set(¬ TransSet X6))))reflexive_i (λX5 : setλX6 : set(tuple_p X6 X5exactly3 X0((((((¬ SNo X5)(¬ atleast6 X6))(¬ irreflexive_i (λX7 : setλX8 : set(¬ SNoEq_ X7 ( X7) X7))))(¬ ordinal (binunion X3 )))reflexive_i (λX7 : setλX8 : set(¬ atleast6 (𝒫 (𝒫 (𝒫 (𝒫 )))))(¬ exactly4 X7)))(¬ atleast6 X3))(trichotomous_or_i (λX7 : setλX8 : set((¬ ordinal X2)(¬ atleast4 X1)))(¬ PNoEq_ X0 (λX7 : setreflexive_i (λX8 : setλX9 : set(atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )((atleast6 X8(exactly2 X8exactly3 X8))ordinal X2)))exactly3 X5(¬ atleast2 X1)(ordinal X0((((¬ equip X0 )(¬ strictpartialorder_i (λX8 : setλX9 : set(SNo X9(exactly3 X4atleast4 X8)))))exactly5 X2)(¬ atleast5 X0)))) (λX7 : setatleast2 X1atleast2 X7))))((((exactly3 (proj0 X0)ordinal X6)(atleast3 X0((TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )exactly2 X5)(¬ nat_p X0))(¬ setsum_p X5)))(¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(¬ exactly4 X5))))))))atleast4 X3))exactly2 X4))(partialorder_i (λX5 : setλX6 : set(((setsum_p X0(¬ nat_p X4))(¬ (X0 X5)))(¬ SNo X6))eqreln_i (λX7 : setλX8 : set((binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )) X4)(exactly5 X8exactly4 X7))))(¬ atleast5 X3)))((¬ exactly5 X4)(equip (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ( X4)(atleast5 X2(¬ exactly5 X4))))))(¬ atleast5 X4)(¬ nat_p X4)))(∀X3 : set, (∀X4 : set, ((((exactly2 X3(exactly2 (V_ X1)((TransSet X1atleast4 X1)(((exactly2 X3((ordinal X4((¬ atleast2 X2)(¬ atleast2 X1)))(¬ atleast3 X3)))(((exactly2 X4(ordinal X4(((¬ exactly4 X0)(¬ atleast3 X3))((((¬ exactly2 )(¬ exactly2 X3))exactly2 X4(¬ exactly4 X3)exactly4 (¬ atleast3 X4)(¬ atleast3 X4)(¬ ordinal ))((¬ atleast5 X2)TransSet X2)))))atleast6 X4)(((¬ nat_p )(exactly3 X2ordinal X3))((reflexive_i (λX5 : setλX6 : set(ordinal (𝒫 (𝒫 (𝒫 (𝒫 ))))ordinal X5))atleast3 X4)atleast5 X3))))(atleast6 (binrep X3 X2)(((atleast2 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(¬ exactly4 X1))atleast3 X3)(¬ exactly3 X3))))))(¬ atleast2 X2))((¬ atleast2 X3)(¬ exactly4 X4)))atleast6 X4)(((¬ setsum_p X2)nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))atleast4 X1))(atleast2 X0(((((¬ atleast6 X4)exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))(¬ TransSet X3))(¬ atleast3 X4))(¬ exactly2 ))))(¬ exactly3 X2)))(¬ (X1 X0))(¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMSwwEs7ccX6EAeDmZfJEY3GouxRR4mvQnm)
∃X0 : set, ((X0 ordsucc (binunion (𝒫 (𝒫 (𝒫 (𝒫 ))))))(∃X1 : set, ((X1 X0)(∀X2 : set, ((∃X3 ∈ X0, (¬ exactly2 X3))atleast2 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(∀X3 : set, (¬ nat_p (binintersect X2 X3))(∃X4 : set, ((atleast6 (𝒫 X4)(atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))(((atleast5 X3((¬ nat_p X4)((¬ exactly5 (Inj1 X4))(¬ TransSet X3))))SNoLe (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ) X3)exactly3 X4)))(¬ ordinal X3))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMSbXQjWXSWfvzwkBbDuYj13vY1VfSfCwT2)
∀X0 : set, (∀X1X0, (exactly2 X1atleast5 X1))(∃X1 : set, ((X1 binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )(∃X2 : set, (((∀X3 : set, (¬ atleast5 X1))(∀X3X1, ∀X4X3, (exactly3 X4(¬ atleast3 X4))))((∀X3X2, (¬ atleast6 )((∀X4 : set, (ordinal X3exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))exactly3 X2)(∃X4 ∈ X3, (¬ atleast5 X1))))(∀X3Inj0 (SNoLev X1), ∃X4 : set, ((X4 X3)((¬ atleast4 X0)(((((¬ (X4 = X3))exactly4 X2)(¬ exactly2 X3))TransSet X4)((X2 X0)SNo_ X3 ))))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMHW7SUTU3kEdFw1wAngcdJX2nhVN47oy3N)
∃X0 : set, ∃X1 : set, ((X1 X0)(∀X2 : set, ∀X3X1, ((∃X4 ∈ X0, (¬ atleast5 X3))((∃X4 : set, (atleast6 X2(atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )((¬ (𝒫 (𝒫 (𝒫 (𝒫 ))) V_ X4))exactly2 (If_i (¬ atleast5 (𝒫 (binrep (𝒫 (𝒫 )) ))) X2)))))(∃X4 ∈ X0, (¬ atleast6 X3))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMNv5cR4Xcoa372nHbRRzPszdMmozbei54M)
∀X0 : set, (∀X1 : set, (∃X2 : set, ((X2 X1)((∃X3 : set, ((X3 X0)(∀X4X1, (¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 ))) ))(¬ SNo X2))))((¬ atleast5 X2)(¬ ordinal X0)))))(∀X2 : set, ((∀X3X2, atleast5 X1)(((¬ atleast5 X2)(∀X3X2, ((∃X4 ∈ X2, (atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))(¬ atleast3 X4)))(∀X4 : set, ((((atleast5 X2((¬ atleast3 X2)((¬ exactly4 X1)(¬ PNoEq_ X2 (λX5 : set(nat_p X5(¬ exactly5 ))) (λX5 : set(¬ exactly5 X5)))((¬ atleast2 X2)(¬ ordinal X2))(((¬ exactly5 X2)((((TransSet X0(¬ exactly2 X0))((¬ (X3 mul_nat X4 ))((atleast2 X2((nat_p X4(X4 X3))nat_p X3)((exactly2 X1atleastp (𝒫 (binrep (𝒫 (𝒫 )) )) X3)(¬ nat_p X3)))(exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(¬ exactly4 X4)(¬ exactly5 ))(¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))nat_p X3ordinal X2)))(¬ exactly4 X4))TransSet X4PNoEq_ X4 (λX5 : set((atleast3 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )(¬ atleastp (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) X2))(¬ TransSet X5))) (λX5 : set(¬ atleast2 )))setsum_p X4)(¬ (X1 X3))))))(¬ exactly4 X4))(¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))atleast4 X3)((((¬ atleast3 (ordsucc X3))atleast6 X4)(¬ atleast6 X4))(¬ nat_p X3))))))(∀X3X2, ∃X4 ∈ X0, (¬ exactly2 X1))))(¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))(∃X1 : set, ∀X2X1, SNo X1(∃X3 ∈ binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) , (¬ atleast6 X2))exactly5 X1)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMXbEUsHrqbPdoSthmj312T2Uh6f8U1M7Dy)
∃X0 ∈ 𝒫 (𝒫 (𝒫 (𝒫 ))), ∃X1 : set, ((X1 𝒫 (𝒫 (𝒫 (𝒫 ))))((atleast3 X1((∀X2X1, (∃X3 : set, ((X3 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))(∃X4 : set, exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))(∃X3 : set, (∀X4 : set, (¬ exactly2 X2)(¬ atleast3 X2))((∀X4X2, atleast6 X3)(∀X4X3, PNoEq_ X3 (λX5 : set(¬ exactly4 X3)) (λX5 : set(((¬ TransSet X2)nat_p ( X5))((¬ exactly5 X4)((X3 X3)(exactly3 X5((((atleast6 X5exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )(setminus X2 X0 X5))(¬ exactly5 X0))(¬ SNo (binrep (𝒫 (𝒫 (𝒫 ))) )))SNoLe X4 X2)))(¬ atleast5 X1))))))))(∀X2 : set, (¬ ordinal ( X1))((∃X3 : set, ((X3 X0)set_of_pairs X0))exactly3 X1)((∃X3 : set, ((X3 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))(∀X4𝒫 X3, PNoLt X4 (λX5 : setnat_p X4) X1 (λX5 : setexactly4 X4))))(∀X3 : set, exactly5 X0(X2 X2))))))(∀X2 : set, ∀X3 : set, atleast5 X3(¬ atleast5 X3))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMFaJhARRpLNaaPtQ4SMpcKYcBZwNaLzfdJ)
∀X0 : set, (∃X1 : set, ((∀X2 : set, ∃X3 : set, ∃X4 : set, ((X4 X3)(¬ atleast5 X1)))(∃X2 : set, ((X2 X1)set_of_pairs X1))))(∀X1binrep (Inj1 ), (¬ reflexive_i (λX2 : setλX3 : setexactly4 X0((∀X4X2, (¬ atleast4 X2))(∀X4X1, ordinal X2)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMPbPpvu3p8PKv4e9Wfxn6APE8iFiSuYgqT)
∃X0 ∈ , ∃X1 : set, ((X1 )(TransSet (lam2 X0 (λX2 : setX0) (λX2 : setλX3 : setX2))((∃X2 ∈ binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) , (∃X3 ∈ X0, ∀X4 : set, (symmetric_i (λX5 : setλX6 : setexactly2 X5)(exactly2 X0((¬ atleast5 X2)nat_p X4)))((¬ exactly4 X4)(¬ atleast6 X2))(¬ atleast2 X2)(¬ TransSet X4))(∀X3 : set, exactly5 X3)(∃X3 : set, (((∃X4 : set, SNo_ X4 X4)(¬ exactly2 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))(∀X4 : set, atleast6 X2))))(∃X2 : set, ((X2 X0)(∃X3 ∈ X2, ∃X4 : set, (((atleast3 X0TransSet X3)(¬ atleast4 X4))((¬ TransSet X3)(¬ SNo X3)))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMH1ezGw54iKSSVrWBi1zf5fwURTBZ6KBoJ)
∀X0binrep (𝒫 (𝒫 (𝒫 ))) , ∀X1 : set, (∀X2binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) , (X1 X2))(∀X2X1, ∀X3PSNo X1 (λX4 : set∀X5 : set, (¬ atleast6 X5)(¬ atleast6 X4)), ∃X4 : set, ((X4 X2)((exactly2 X3(X1 X2))((¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(¬ reflexive_i (λX5 : setλX6 : set((exactly2 X6(¬ atleast6 X5))((¬ (X2 X6))atleast6 X0))))(((atleast4 (ordsucc X3)(exactly2 ( (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(atleast5 X4(X4 X4))))(¬ ordinal X3))(¬ exactly5 X3))(ordinal X0(X1 X1))))))(∀X2 : set, (∃X3 ∈ proj1 X2, ∀X4 : set, (¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) ))atleast2 X4)atleast5 X2)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMVqikVszYaBDyCxvbbXjFeeQfVEwEYKqay)
∀X0 : set, (∀X1setsum X0 X0, ∀X2X0, ∃X3 : set, ∃X4 : set, ((((ordinal X4(¬ setsum_p X4))((¬ reflexive_i (λX5 : setλX6 : set((¬ atleast6 X6)(exactly5 X6(¬ atleast6 X6)))))(¬ atleast4 X4)))(¬ ordinal X3))(¬ ordinal X4)))(∃X1 : set, ((X1 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(∀X2 : set, (¬ SNoLt X1))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMcrkeKGcN5jGcbstFaBW57AQ1Mu5MiF9CF)
∃X0 : set, ((∃X1 : set, ((∀X2 : set, (∀X3X0, atleast4 X2)(∃X3 ∈ X2, ∃X4 : set, TransSet X2))(∃X2 : set, ∀X3 : set, atleast3 X2(∀X4X2, exactly4 X4(((¬ exactly5 X2)(¬ atleast6 (Inj0 X0)))(¬ ordinal (binunion X4 X3)))))))(∀X1X0, ∃X2 : set, ((X2 X1)(∀X3X2, (¬ atleast2 X2)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMXayNheREmDBVA6uHfRp2fc6nQ3PpqVQzy)
∃X0 : set, ∀X1 : set, ((∃X2 : set, ((¬ atleast5 X1)(∃X3 : set, ((X3 X0)(((∀X4 : set, exactly5 X4)(∃X4 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 )) )) , ((exactly5 X2TransSet X4)((¬ atleast6 X0)(¬ nat_p X3)))))(∀X4, ((((((atleast4 (((atleast2 X0((((((exactly3 X1atleast2 (add_nat X2 X3))atleast5 X3)atleast3 X3)(¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))(¬ nat_p X3))exactly2 X4))(¬ TransSet ))(¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))(nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(¬ tuple_p X4 X2)))((atleast6 X3atleast2 X4)(¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))atleast3 X4))(¬ exactly4 X4))((X4 X3)(¬ atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))))(¬ atleastp (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) X2))))))))(¬ ordinal X0))(¬ exactly4 X0)(∃X2 ∈ X0, (¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMSNrz5g75rW7opNZWF8pDb38nziKAZXs3T)
∃X0 : set, ((X0 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(∀X1 : set, ((∃X2 : set, (equip X2 X0(∃X3 : set, ∃X4 : set, ((X0 = X2)((¬ atleast6 X2)(atleast4 X1(¬ exactly2 X2)))))))(¬ set_of_pairs X0))((¬ symmetric_i (λX2 : setλX3 : set∀X4 : set, (((atleast5 X2(ordinal X0exactly2 X0))(¬ atleast2 X3))(¬ atleast2 (Inj1 X0)))(¬ setsum_p X4)))(∀X2X0, ∀X3X1, ∀X4X3, TransSet X3))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMSoQEKHfLREbFdTJbTzLVSGdb85qE4D5n9)
∀X0 : set, (∀X1 : set, (∀X2X0, ∀X3 : set, ∃X4 : set, ((X4 binrep X3 X2)(((atleast5 X0((¬ setsum_p X2)(¬ exactly5 X0)))exactly2 (binrep (𝒫 (𝒫 (𝒫 ))) ))(¬ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))))(∀X2 : set, (∃X3 : set, ((X3 X0)(∃X4 : set, ((((¬ reflexive_i (λX5 : setλX6 : set(SNoLe X6 X6(atleast6 X0(atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(((((((atleast6 ((SNo_ (Inj1 X6) (¬ exactly2 X1))((atleast2 X4(¬ atleast2 (ordsucc X0))(¬ nat_p (ap X5 X6)))((((((¬ atleast2 (𝒫 (𝒫 (𝒫 (𝒫 )))))(¬ exactly3 X5))(((((¬ exactly2 (𝒫 (binrep (𝒫 (𝒫 )) )))((¬ nat_p X5)((((((¬ SNoLt X0 X1)(ordinal X6((¬ ordinal X5)setsum_p X0))((((¬ atleast2 X2)(¬ atleast3 X0))(((((¬ TransSet X6)(((atleast2 X6(¬ atleast3 X1))((¬ setsum_p )(¬ (X5 X6))))(¬ reflexive_i (λX7 : setλX8 : set(¬ (X2 X8))))))(¬ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))(((((¬ PNoLe X0 (λX7 : set(¬ exactly5 X3)exactly3 X0) X5 (λX7 : set((atleast3 X6(¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))atleast4 X6)))(TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))((¬ atleast4 X6)(¬ (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ) X2))))(tuple_p X6 X0(¬ atleast5 X2))set_of_pairs (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(¬ atleast2 X0))(exactly2 X2((((stricttotalorder_i (λX7 : setλX8 : set(¬ atleast4 X5))(¬ atleast4 X6))(TransSet (Inj0 X5)(X3 X2)))set_of_pairs X5)atleast5 X5)))(((exactly4 X3((¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))(¬ (X3 X2)))TransSet (V_ X5))atleast2 X5)((¬ atleast4 X6)atleast6 X2))))((¬ SNoLt X3 X6)((¬ bij X6 X6 (λX7 : set))(¬ (Sing X6 X5))))))((¬ (X5 X4))(¬ atleast4 X0))))((¬ set_of_pairs X6)((atleast2 X0TransSet X0)nat_p X5)))(SNo X6(((¬ ordinal X6)ordinal X2)(¬ atleast3 X6)((¬ exactly2 X3)(((¬ TransSet X2)(¬ exactly3 X5)(¬ exactly5 X4))((¬ atleast5 X6)atleast2 X6)))(¬ atleast3 X6))))(((¬ exactly5 X6)(¬ atleast3 X5))(¬ atleast5 X5)))(((((¬ atleast6 X5)(((¬ setsum_p X5)((¬ atleast4 )(¬ atleast5 X6)))reflexive_i (λX7 : setλX8 : set((exactly4 X1((TransSet X8atleast4 (Sep (Inj1 X1) (λX9 : setexactly2 X9)))tuple_p X8))(((¬ exactly4 X3)(¬ atleast6 X7))((¬ atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))atleast5 X0set_of_pairs X8(SNo (Sing X8)((atleast5 X2atleast4 X7)(¬ (X6 X8)))))))(¬ atleast4 X8))))TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(¬ exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))(((exactly2 X5((¬ ordinal )(set_of_pairs X0((¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))((((¬ PNoLe (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) (λX7 : setsetsum_p X6) X6 (λX7 : set((¬ setsum_p X7)SNo X5)))(¬ atleast4 X5))((atleast2 X4(exactly4 X6SNo X0))(¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))))(((¬ atleast3 X5)atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))((¬ reflexive_i (λX7 : setλX8 : setatleast4 X3))nat_p X5)))(¬ (X0 X5))))))exactly5 ( ))(¬ exactly4 X3))))))(¬ atleast2 X5))atleast3 X0)((¬ exactly4 X6)SNo X6)))(¬ exactly3 X5))(¬ TransSet X6))(¬ ordinal X0)))((¬ set_of_pairs )(exactly2 X4exactly3 X5))))(¬ SNo X6))atleast5 X6SNo (𝒫 X6)((¬ setsum_p X5)((atleast5 X5(exactly4 X5(((¬ exactly2 X6)(((((((¬ exactly3 X4)exactly3 X5)(((atleast3 X5((¬ nat_p X5)(¬ SNo X6)))(¬ ordinal X5))atleast5 X5))exactly5 X1(¬ set_of_pairs X5))(((exactly2 X0(atleast2 X0((exactly4 (𝒫 X6)(((((atleast6 X5(TransSet X6((¬ exactly2 (Unj X5))(¬ SNo_ (𝒫 (𝒫 (𝒫 (𝒫 )))) ))))(¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))(¬ TransSet (UPair X3 (𝒫 (binrep (𝒫 (𝒫 )) )))))equip X5 X6)(((exactly3 X5(¬ atleast3 (ordsucc X6)))(¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))(((atleast3 X6(¬ atleast6 X6))atleast6 X5)(((¬ atleast6 (ordsucc X5))ordinal X5)(binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) X0))))))(¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 ))) )))))(¬ atleast4 X1))ordinal X5))(¬ exactly5 X5))set_of_pairs X6)(((atleast6 X0((atleastp X0 X4(atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )((¬ exactly4 X5)(((atleast4 X6setsum_p X5)((¬ atleastp X5 X5)(atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))atleast4 X6)))(¬ ordinal (Inj0 X5))))))(¬ atleast5 X5)))(¬ exactly2 (V_ X1)))((¬ ordinal X6)(((((((¬ atleast6 X6)(nat_p X3(reflexive_i (λX7 : setλX8 : setatleast5 X7)(((¬ nat_p X0)exactly4 X5)ordinal (proj0 X6)))))(((¬ (X0 = X4))nat_p X6)atleast3 X5))(SNo_ X6 X0(¬ atleast6 X5))(exactly4 X6((¬ atleast3 X0)(X6 Sing X0)))(¬ exactly5 X5))(X1 = X6))((((¬ ordinal X6)((exactly2 X0(irreflexive_i (λX7 : setλX8 : set(¬ atleast4 X0))((¬ exactly2 X3)((¬ atleast6 (mul_nat X6 X1))atleast5 X2))))((exactly2 (((((exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))(¬ equip X6 (𝒫 X5)))(((¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))SNo X5)SNo (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))(exactly4 X6atleast4 (𝒫 (binrep (𝒫 (𝒫 )) )))(¬ exactly3 X5))TransSet X6)(¬ exactly4 X0)))exactly2 X6)))(¬ exactly5 (lam X5 (λX7 : setX6))))((¬ atleast5 X6)(((¬ ordinal X5)(ordinal X0(¬ atleast6 X0)))(((atleast5 X0(¬ atleast2 ))exactly1of2 ((exactly2 X1(¬ exactly4 X6))atleast3 X5) (¬ TransSet X2))atleast6 X0)))))nat_p X0))))((¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) ))((((((¬ SNoEq_ X6 X2 X2)((atleast4 X6(TransSet X5(stricttotalorder_i (λX7 : setλX8 : set(((((¬ atleastp X7 X8)exactly3 X8)nat_p )(¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(ordinal (lam (SetAdjoin X8 X7) (λX9 : setbinrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))((((¬ exactly2 X2)((SNo X6atleast4 X8)TransSet X8))(atleast2 X7(¬ exactly4 )))(¬ (X7 X7))))atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(atleast3 X2(¬ atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))))(¬ atleast5 X6))))(¬ atleast2 )))(PNoEq_ X0 (λX7 : setTransSet (binrep (𝒫 (𝒫 (𝒫 ))) )(¬ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))) (λX7 : set((setsum_p X7exactly3 X6)exactly4 X6))(¬ ordinal X6)))atleast4 X6)PNo_downc (λX7 : setλX8 : setprop(X8 (¬ TransSet X7))TransSet (Sing X0)) X6 (λX7 : set((¬ SNo (SNoElts_ X4))(¬ SNo X7))(¬ nat_p X2)(𝒫 (𝒫 (𝒫 (𝒫 ))) X6)))(¬ exactly4 X0))((((¬ ordinal X5)(atleast5 X0((¬ SNo X5)(¬ exactly3 X4))))exactly4 X5)(equip X6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )atleast5 X6))(((((¬ ordinal X5)(¬ (X5 X5)))((¬ atleast6 X0)(((exactly3 X5(((¬ TransSet X6)exactly2 )reflexive_i (λX7 : setλX8 : set(X7 binrep (𝒫 (𝒫 (𝒫 ))) ))))(¬ exactly3 X2))(¬ exactly5 X6))))(exactly5 (Inj0 X5)atleast3 X1))atleast5 X5)))))((((¬ exactly5 X5)(¬ exactly5 X0))(¬ atleast6 X5))(PNoLe X2 (λX7 : setordinal X3) (binintersect X6 X6) (λX7 : set(¬ exactly2 X3))((((X0 X5)exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(¬ atleast2 X0))((¬ SNo (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))eqreln_i (λX7 : setλX8 : set((((exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )((¬ exactly3 X6)(¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))))exactly5 X8)ordinal X5)((¬ TransSet X1)(((¬ trichotomous_or_i (λX9 : setλX10 : setexactly3 X10))exactly3 (V_ (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))(¬ exactly5 X7)))))))))exactly2 X3)))(exactly2 set_of_pairs X0))(((set_of_pairs X5set_of_pairs (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))nat_p X0)((¬ exactly2 X6)(¬ exactly4 X5))))(¬ exactly5 X6))(¬ nat_p X5)))))(¬ exactly3 X3)))(¬ (X2 proj1 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))((atleast3 X0((((¬ atleast4 (Sing X2))(¬ equip X3 X1))(¬ exactly4 X1))((((¬ atleast3 X3)(atleast5 X0((atleast4 X2atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))((((¬ setsum_p X3)(¬ set_of_pairs (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))irreflexive_i (λX5 : setλX6 : setPNoLt_ X6 (λX7 : set(¬ atleast2 (proj1 (𝒫 (binrep (𝒫 (𝒫 )) ))))) (λX7 : setatleast5 X6)(¬ set_of_pairs X6)))set_of_pairs X3))))exactly2 X2)atleast5 X2)))((¬ TransSet X3)(((¬ linear_i (λX5 : setλX6 : setatleast6 (binrep (𝒫 (𝒫 (𝒫 ))) )))TransSet (UPair X4 X4))exactly5 X2))))TransSet X3))))(∀X3, ∀X4 : set, (¬ exactly4 ))))(∃X1 ∈ binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) , ((∃X2 : set, ((∀X3X1, (¬ exactly4 X2))(exactly2 X0(¬ exactly4 X1))))(∃X2 : set, ∀X3 : set, nat_p )))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMTZ9eR4pdP1UxeqzQqfN5yv5dXubCdpFRM)
∀X0, ∃X1 ∈ , ∃X2 : set, (∃X3 : set, (exactly3 X1(∀X4 : set, (reflexive_i (λX5 : setλX6 : set(¬ atleast2 X5))(TransSet X3(((¬ atleast3 X0)(exactly2 X4SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))(atleast4 X3(¬ atleast4 X4))))))))(¬ atleast2 X0)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMUUNhEw7Uc26GmeMxvD242MWWKvRHRBHdD)
∀X0 : set, (∀X1 : set, (∃X2 : set, ∀X3 : set, ∃X4 : set, ((X4 X2)nat_p X3))(∃X2 : set, ((X2 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))(∃X3 : set, ∃X4 ∈ Inj1 X0, (¬ atleast3 X4)(¬ ordinal X3)))))(∃X1 : set, ((∃X2 : set, (¬ TransSet X2))(∃X2 : set, ((X2 X1)(∃X3 : set, ((X3 Unj X2)(¬ inj X2 X2 (λX4 : setX2))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMYubzBzy5KXVSJKUQf5yopMoVFR7FrjcEm)
∃X0 : set, ((X0 binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )(∀X1X0, ∃X2 ∈ , ∀X3 : set, ∃X4 : set, (((reflexive_i (λX5 : setλX6 : set(¬ atleastp (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ) X0))setsum_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))SNo_ X3 X3(X0 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))atleast5 X4)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMcivZb9qdF25uDhjB6cai2xKzSHyK1BKAf)
∀X0 : set, ∃X1 : set, ((∀X2 (𝒫 (𝒫 (𝒫 (𝒫 )))), (¬ exactly3 X2))(∀X2 : set, (∃X3 : set, ((∀X4 : set, ((¬ binop_on (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) (λX5 : setλX6 : setX0))((setsum_p X4(X2 = ))set_of_pairs X0)))(∃X4 : set, (¬ exactly4 X3))))(∀X3X1, ∃X4 : set, ((¬ (𝒫 X4 binrep (𝒫 (𝒫 (𝒫 ))) ))(((¬ SNo_ X3 (PSNo (𝒫 (binrep (𝒫 (𝒫 )) )) (λX5 : set(¬ exactly5 X5))))SNoLt X4 )((¬ nat_p X3)atleast5 X4))))(¬ exactly2 X1)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMLFPXLU1Az5hWtcj7qSWu8Yp7JcnkNfmUN)
∃X0 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )), ∃X1 : set, ((∀X2 : set, ((∀X3 : set, ∀X4 : set, setsum_p X3)exactly3 X2)(∃X3 : set, ((∃X4 : set, (atleast2 X3((¬ (X4 X4))((ordinal X4(¬ exactly3 X3))((¬ SNo X3)(¬ exactly2 X3))))(¬ exactly3 X2))(X4 X4))reflexive_i (λX4 : setλX5 : setatleast5 X3((¬ (Inj0 X0 X5))((¬ atleast5 X2)(((((X0 X5)(((¬ exactly4 X5)(¬ TransSet X5))(atleast2 X4(exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(((¬ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(¬ exactly4 X4))exactly5 X4)))))((exactly3 X4(exactly5 X5atleast5 X4))(¬ exactly2 X5)))(setsum_p X4((((¬ setsum_p X0)(SNo_ (((SNo X5(((¬ atleast3 X0)atleast2 X4)exactly4 X0))(¬ atleast4 (𝒫 (𝒫 (𝒫 (𝒫 ))))))(¬ reflexive_i (λX6 : setλX7 : set((¬ TransSet X6)SNoLe X0 X7))))))exactly5 X4)(TransSet X3(exactly3 X4((¬ atleast4 X1)(atleastp X5 X4(¬ SNo ( X4)))))))))atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))))))(∀X4ordsucc (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ), ordinal X1)))(¬ exactly3 X1))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMQaVHp5UysP9Kb7wPrW64VW8DhbUQfW76G)
∃X0 ∈ , ∀X1 : set, (∃X2 : set, ((X2 binrep X1 X0)(∃X3 ∈ X1, (((∀X4 : set, setsum_p X3)(∃X4 : set, ((X4 X0)exactly5 X4)))(((¬ atleast6 (Inj0 X2))atleast3 (add_nat X3 X3))PNoEq_ X2 (λX4 : set(¬ exactly3 X3)) (λX4 : set(((TransSet X0(SNoLe (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ) X4(ordinal set_of_pairs (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))))tuple_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ) X0)exactly5 X3)setsum_p X4))))))(∃X2 : set, (¬ atleast4 X2))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMWkY6dRsoLhTt5fQbEeH7aAsJdmrM8k9cY)
∃X0 : set, ∃X1 : set, ((∃X2 : set, ((X2 )((∀X3X1, ∀X4 : set, (((¬ atleast6 X4)TransSet X4)((¬ atleast3 X4)(¬ setsum_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))))(∃X3 : set, ((∀X4 : set, ((((¬ nat_p X3)setsum_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )((¬ (X4 binunion X2 X3))(atleast6 X4(¬ atleast3 X2))))((¬ set_of_pairs X1)((¬ ( X3))strictpartialorder_i (λX5 : setλX6 : setexactly4 X6))))(¬ atleast2 X3)))exactly5 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))))))SNo X0)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMVxpDGAsUSPS8moMMSmXJ9m9BdSBLwWuqp)
∃X0 ∈ , ∀X1 : set, (reflexive_i (λX2 : setλX3 : set∃X4 ∈ X1, atleast2 X4tuple_p X3 X4)(∀X2X1, SNo (setexp X0 X2)))(∃X2 : set, ordinal X2)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMT451y3yTGWfK6ukqE1VeKDywp5dU5iiQv)
∃X0 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) , ∃X1 : set, ((X1 X0)(∃X2 : set, ((∀X3X0, atleast6 X2)(((∃X3 : set, ((X3 X2)(∀X4binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )), PNoEq_ X3 (λX5 : set((¬ atleast5 X5)(¬ TransSet X4))) (λX5 : set(exactly5 X4exactly3 X2)))))(¬ exactly3 X0))(∃X3 : set, exactly5 )))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMTZG17v1bXE28L1Gk2EqTXonhFst9ZLh4w)
∀X0, ∃X1 : set, ((∃X2 : set, ((X2 X1)((∀X3 : set, (¬ reflexive_i (λX4 : setλX5 : set(¬ reflexive_i (λX6 : setλX7 : set(¬ ordinal X0))))))(((¬ setsum_p X1)((∃X3 : set, ∃X4 : set, ((X4 X1)(¬ atleast3 X0)))((∃X3 : set, (((∃X4 : set, ((¬ SNoLt X2 X0)SNo X3)atleast5 X4)(∀X4binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ), exactly4 X4))(¬ atleast2 X3)))atleast2 (ordsucc X2))))(atleast3 X1(∀X3binrep (𝒫 (binrep (𝒫 (𝒫 )) )) , SNoLt X3 X3)))(∃X3 ∈ X1, ((∀X4V_ X2, (¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) )))((¬ nat_p (V_ X1))(∀X4X0, (inj X3 X3 (λX5 : setbinrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(¬ atleast3 X3)))))))))(exactly2 X1(∃X2 : set, ∀X3X1, atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMSJRsr4CoZkng6idgTxXo2gYf2rLWG1YJk)
∃X0 : set, ((X0 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(∀X1 : set, ∃X2 ∈ X0, ∃X3 : set, ((X3 X2)((∀X4, (¬ SNo X1)atleast4 X2)(∀X4 : set, (¬ exactly2 X2)(((¬ atleast5 X4)(atleast6 X3(((SNo X4(((SNo X1(SNo X3atleast6 X4))atleast4 X4)(¬ set_of_pairs X1)))(¬ atleast6 (𝒫 (binrep (𝒫 (𝒫 )) ))))(atleast2 X1(¬ set_of_pairs X3)))))atleast5 X0)((¬ SNoLt X3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))((((¬ atleast6 X2)((¬ nat_p X4)(¬ atleast3 X4)))(¬ exactly3 X3))((((TransSet X4((setsum_p X3(¬ exactly3 X3))((¬ nat_p X4)atleast2 X1)))atleast2 X4)(¬ exactly2 X3))TransSet X3))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMHJMz9PpCsDTXQuMF1K5FADTCje36UrAAJ)
∃X0 : set, ((∀X1X0, ∃X2 : set, ((X2 )TransSet X1))(∃X1 : set, ∀X2X1, ((∃X3 ∈ X2, (¬ SNoLt X3 X1))(∀X3 : set, ∀X4 : set, (¬ exactly3 X4)nat_p X2))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMBtFBLRvMeyw4cpVaa4rVDkgvuVWYBk4r)
∃X0 : set, ((∃X1 : set, ((¬ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ) lam2 X0 (λX2 : set𝒫 (binrep (𝒫 (𝒫 )) )) (λX2 : setλX3 : setX3)))(∃X2 ∈ X1, ∀X3 : set, (∃X4 : set, ((X4 X0)PNoLe X4 (λX5 : set(¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) ))) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) (λX5 : set(exactly2 (¬ equip X3 X4)))))(∃X4 : set, atleast6 X3)((∀X4X3, (¬ (X4 X3)))SNo X0))))(∀X1 : set, (¬ exactly5 X1)nat_p X1((∃X2 : set, ((¬ atleast5 )(¬ nat_p X0)))(∃X2 ∈ X0, ∀X3binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ), atleast2 X2))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMGW3BcWwU7eBfGyVraeyDKZfgR1KZ61Mbg)
∀X0 : set, (∀X1X0, ∀X2 : set, exactly1of2 (∃X3 : set, ∃X4 : set, (¬ ordinal X3)) ((exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )(∀X3 : set, (∀X4SNoLev X1, (¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))(∀X4X0, setsum_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ bij X1 X0 (λX4 : setX3))(∃X4 : set, ((¬ TransSet X2)exactly4 X3))))(∀X3X2, ∀X4 : set, (¬ exactly5 X4))))(∀X1, (¬ exactly4 X0))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMhjwr2JcvTMGYfZD2tv5DH25DPRcJ2vmg)
∃X0 : set, ((∀X1X0, (∃X2 : set, ∀X3 : set, ∃X4 ∈ X3, (((¬ atleast6 X3)(¬ exactly2 X4))(¬ TransSet X4)))atleast2 X1)(∀X1V_ X0, (∀X2 : set, ∀X3𝒫 (𝒫 (𝒫 (𝒫 ))), ∃X4 : set, ((¬ atleast5 )exactly2 X2))(∃X2 ∈ X0, atleast3 X1(∃X3 : set, ((∃X4 : set, (TransSet X1((((((¬ SNo X4)(((¬ exactly4 X3)(¬ exactly3 X3))(¬ equip X4 X3))exactly2 X3)(¬ atleast2 X3)exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))(((tuple_p X1 exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))setsum_p X1)(¬ setsum_p X2)))atleast6 )atleast4 (SetAdjoin X3 X4))(¬ exactly4 X3)((¬ ordinal X1)atleast4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))))(TransSet X3(¬ atleast2 X4)))(∃X4 : set, (((atleastp (binunion (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) X4) X1((((¬ ordinal (Unj (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))(¬ exactly3 X3))(SNo_ (binrep (𝒫 (𝒫 (𝒫 ))) ) (binintersect X4 )(¬ SNoEq_ X3 X3 X3)))setsum_p X3))(TransSet X3(¬ SNo X4))((atleast3 X1(((((¬ nat_p X4)(¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))(((((exactly3 X4(atleast3 X4((atleast6 X0((¬ TransSet X1)(X3 X2)))(SNoLe (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) X4(¬ SNo_ X0 )))))((((¬ atleast6 X3)exactly2 X4)(¬ atleast6 ))exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))ordinal X3)((¬ atleast3 X3)(¬ exactly5 X1)))(atleast2 (UPair X0 X4)(¬ exactly2 X3))))(¬ atleast2 X3))ordinal (binrep (𝒫 (𝒫 (𝒫 ))) )))((exactly2 X0atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))atleast5 X2)))(((¬ atleast6 (Pi X1 (λX5 : setX4)))((¬ exactly3 )((¬ SNo_ X3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))((((bij X3 X3 (λX5 : set)(atleast2 X3SNoLt (SNoElts_ X4) (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))exactly3 X3)set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))((¬ ordinal )atleast6 X4)(¬ atleast5 X4)))))((¬ (X3 binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))((¬ exactly1of2 (exactly4 (Inj1 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))) (¬ atleast6 X4))atleast4 X3))))per_i (λX5 : setλX6 : set(¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMYacgtjrbxaJTMWj6C2N1oAph39VLxkKRk)
∀X0binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )), ∀X1X0, ((∃X2 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )), ∃X3 : set, ((X3 X0)((∀X4 : set, (X4 X2))(¬ exactly3 X0))))(∃X2 ∈ X0, ∀X3 : set, atleast5 X3))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMPYwQEDGi9an9uvnxtgki1X4MugSoKW2nt)
∃X0 ∈ , ∀X1combine_funcs X0 (PSNo X0 (λX2 : set∀X3X2, ((X2 X2)(((¬ (X2 = X0))(∀X4binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ), (∀X5X3, (((¬ nat_p X3)SNo X5)(((¬ nat_p X4)(((¬ exactly4 X5)((((exactly3 X3exactly2 X4)(¬ atleast6 )TransSet X5)(exactly3 X5(((¬ TransSet X3)(¬ atleast4 X5))exactly3 )))(¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))))exactly5 X5))(((atleast5 X5((((¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(((¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(setsum_p X0(¬ reflexive_i (λX6 : setλX7 : set((((((¬ atleast5 X6)((¬ atleast6 X3)(((exactly4 X6nat_p X6)(((ordinal X6(((¬ (X6 ))(¬ ordinal X7)ordinal X6(¬ exactly5 X6))(ordinal X6exactly3 (mul_nat X7 X7))))atleast3 X6)((set_of_pairs X7(¬ exactly3 X4))(¬ linear_i (λX8 : setλX9 : set(¬ TransSet X3)))exactly3 )))exactly5 X6)))(atleast2 X0exactly3 (𝒫 (binrep (𝒫 (𝒫 )) ))))atleast2 X7)(¬ atleast5 X0))(¬ exactly5 X6))))))atleast3 X5)(¬ atleast5 X2))((((¬ exactly5 (Sing (𝒫 (binrep (𝒫 (𝒫 )) ))))(¬ exactly5 X3))((SNo X5((¬ exactly5 X5)(((¬ atleast2 X0)(ordinal atleast3 )(¬ nat_p X5)(¬ exactly4 ( ))((¬ TransSet X3)((¬ atleast6 X5)(PNo_downc (λX6 : setλX7 : setpropX7 X5) X4 (λX6 : set(¬ atleast3 X5))((atleast6 X3(¬ equip X3 X4))((TransSet X4set_of_pairs X4((((¬ ordinal )atleast4 X4(¬ atleast3 X5))(¬ exactly3 X0)((¬ nat_p X5)(((atleast4 X5(¬ setsum_p X2))(¬ atleast6 X4))((¬ atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))nat_p X5))))(setsum_p X4(¬ exactly5 X5))atleast4 X5)(exactly4 X5((¬ SNo X5)(¬ TransSet X5))))(atleast3 X0atleast3 X3)))))))(¬ exactly4 X0))))ordinal X4))(¬ atleast3 X3))))((atleast4 X4atleast3 X5)setsum_p X0))ordinal X5)))(¬ ordinal X3))(∃X5 : set, ((X5 X3)(atleast3 X5exactly5 X3)))TransSet X3))(∀X4 : set, (∀X5 : set, (¬ atleast5 X5)(((atleast4 X5((¬ reflexive_i (λX6 : setλX7 : set(((((atleast3 X5((¬ exactly4 X6)(((¬ exactly5 X0)atleast6 X6exactly2 X3(¬ atleast3 X0))(atleast5 X0exactly3 (proj1 ))(¬ nat_p X6))))((X6 = binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))atleast4 ))nat_p X4)(¬ atleast3 ))atleast6 X0)))((¬ (X4 V_ X5))SNo (Sing X3))))(atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )(¬ atleast2 (𝒫 (binrep (𝒫 (𝒫 )) )))))exactly4 X2))atleast6 X2))))) (λX2 : setX2) (λX2 : setbinrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )), atleast5 X0TransSet X0
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMKHkHkSRJpDgTWxXS8DYRFdVMgLAcoXc93)
∃X0 : set, ((∃X1 ∈ proj1 , ∀X2X1, ∀X3X0, ∀X4 : set, (((atleast3 X3((¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(nat_p X3(¬ atleast5 X4))((((¬ atleast3 (𝒫 (𝒫 (𝒫 (𝒫 )))))set_of_pairs X0((((exactly3 X3atleast2 X2)(¬ atleast3 X3))(exactly2 X4(((¬ atleast4 X3)(¬ SNoLt X1 X3))(¬ SNo X0)((((atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))exactly3 X2(¬ setsum_p X3))(((¬ tuple_p X4 X3)atleast4 X2)(((¬ SNo X4)(¬ TransSet (V_ X4)))equip X4 X2)))(((((((((¬ TransSet X3)bij X3 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ) (λX5 : setX4))(((¬ (X4 X2))atleast4 )TransSet X4)(¬ exactly5 X3))(¬ atleast5 ))(¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))(¬ exactly5 X3)(¬ exactly4 (𝒫 (binrep (𝒫 (𝒫 )) )))SNo X2)((((¬ atleast4 X2)(¬ nat_p X0))ordinal X2)exactly4 X3))(exactly2 (atleast5 X3((¬ (X3 (Sing )))(¬ (X3 X1))))))(binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ) = X4)(¬ setsum_p X4)))TransSet X3))))(atleast3 ((atleast6 X4atleast3 X2atleast3 X0)((¬ reflexive_i (λX5 : setλX6 : setexactly4 X6(¬ ordinal X6)nat_p X5))(¬ nat_p X0))))))(¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) )))atleast2 X4)))atleast2 X4)nat_p X2)(¬ SNoLe X0 X2))(∀X1 : set, (¬ atleast4 X0)(∃X2 : set, (((∃X3 ∈ binrep X0 X1, ((∃X4 ∈ X3, (TransSet X3((¬ SNoLt X0 X2)(atleast6 X0nat_p X3)(¬ eqreln_i (λX5 : setλX6 : setatleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))))((∀X4, nat_p (¬ atleast3 X4)((¬ exactly3 X4)(((((¬ exactly2 X4)(¬ atleast2 X2))(¬ atleast6 X4)exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))atleast3 X0)(ordinal X2(ordinal X3(((¬ atleast5 X4)ordinal X4)((¬ exactly2 )(¬ ordinal X0))))))))(¬ eqreln_i (λX4 : setλX5 : set(PNoLe X5 (λX6 : set(SNoLe X0 X5(¬ setsum_p X0))exactly5 X5) X5 (λX6 : set((¬ exactly5 X0)(TransSet X6(¬ exactly4 X5))))((¬ reflexive_i (λX6 : setλX7 : set(X0 X6)))(¬ exactly2 )))((¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))((((((((atleast3 X1(¬ atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))ordinal X1atleast6 X5)atleast3 X0)(((¬ exactly5 X5)(setsum_p X4TransSet X5))atleast2 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(¬ atleast4 (Inj0 X0)))((¬ TransSet X5)(¬ tuple_p (ap X5))))((¬ exactly5 X0)exactly2 X1))(((((exactly4 X5(¬ atleast4 X5))((¬ atleast6 X4)exactly3 X4))((((set_of_pairs X0(¬ atleast5 X4))(((¬ atleast3 (𝒫 (𝒫 (𝒫 (𝒫 )))))(¬ atleastp X4)set_of_pairs X3)(¬ atleast3 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))))(¬ atleast6 (SNoElts_ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))((((atleast3 X2(((¬ atleast4 (Sing X4))(¬ atleast6 X4))((¬ exactly2 X4)(¬ ordinal X2))))((¬ reflexive_i (λX6 : setλX7 : set(¬ atleast6 X6)atleast6 X6))((¬ atleast3 X4)((((((¬ tuple_p X5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(set_of_pairs X4exactly3 X2))(atleast2 (((¬ exactly4 X2)(exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(¬ atleast5 X0))TransSet X3)((nat_p X2((¬ nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(¬ TransSet (V_ X4))))exactly3 X4))))(¬ exactly5 X5))(¬ TransSet (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))atleast2 (SNoElts_ X4)))(TransSet X5(((((((((¬ ordinal )(set_of_pairs (proj1 X5)(¬ atleast2 X5)))(¬ atleast5 X3))(¬ (X0 X5)))(¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))((¬ nat_p X5)(SNo_ X4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(setsum_p X4(¬ ordinal X4)))))(atleast5 X5((¬ exactly4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))atleast4 X1))exactly3 X5)atleast3 X4)(¬ atleast3 X4)))))(((((¬ exactly2 X5)(((TransSet X3((¬ exactly3 )((exactly4 X5(¬ atleast3 X3))(nat_p (ordsucc (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))atleast4 X3))))((atleast4 X0(setsum_p X4ordinal (Sing X5)))((¬ exactly2 X4)((¬ TransSet X4)(¬ exactly4 X1)))))((((((¬ exactly5 X5)(exactly3 X4SNo (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))((¬ exactly4 X5)(¬ atleast2 (Sing X5))))(((exactly4 X0(¬ TransSet X5))(((((¬ bij X5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ) (λX6 : setX6))exactly5 X4)(¬ exactly4 X5))((¬ exactly3 X3)(((exactly4 X0atleast4 X4)(((¬ nat_p X0)(exactly4 X4exactly4 X4))(¬ atleast5 X5)))((¬ exactly3 X4)TransSet X5))))(¬ exactly5 X0))((¬ totalorder_i (λX6 : setλX7 : set((((¬ atleast2 X7)atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))((¬ TransSet X3)atleast2 X6))(¬ atleast3 X7))))((atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))exactly3 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ atleast3 ))))((¬ SNoLe X5 X5)(¬ SNo (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))))exactly4 X5(¬ nat_p X3))(¬ atleast3 X4))))exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))atleast3 X4)(reflexive_i (λX6 : setλX7 : set(PNoLe X7 (λX8 : set(¬ exactly4 X7)) X2 (λX8 : set(atleast4 X7(((((¬ exactly5 X2)(((¬ setsum_p X0)(TransSet X2ordinal X6(((¬ atleast5 (Inj0 X8))((atleast2 (Sing X8)(per_i (λX9 : setλX10 : setatleastp X5 X9)(exactly2 X5((setsum_p X0set_of_pairs X8)(set_of_pairs X5exactly2 X7)))))((¬ exactly3 X8)SNo X2)(¬ equip X8 )))((¬ exactly4 X0)atleast5 X6))))setsum_p X8))(X3 X7))exactly4 X8)PNoLt (λX9 : set(¬ atleast4 )) X7 (λX9 : set(¬ atleast2 X8)))))(SNoLe X6 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )(¬ atleast4 X7))))exactly3 X0)))(¬ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) X2)))))(((¬ atleast5 X4)(¬ atleast6 X3)TransSet X5)((¬ SNo X3)(¬ exactly1of3 ((set_of_pairs X5(¬ setsum_p ))((exactly3 X4SNo (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))(ordinal X5atleast5 X4(((((((¬ exactly3 X3)exactly3 X4(((¬ atleast2 X5)((¬ exactly4 X4)exactly2 X4))(((¬ atleast4 X0)(¬ tuple_p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ) ))((¬ atleast2 X4)(¬ SNo (Sing X4)))))(¬ bij X0 X5 (λX6 : setbinrep (𝒫 (𝒫 (𝒫 ))) )))nat_p X5)(¬ (X4 )))((((((atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )((¬ setsum_p X4)(atleast5 X5atleast3 X4))atleast4 X3)TransSet (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(¬ nat_p X5))set_of_pairs X5(¬ setsum_p X5))(¬ ordinal X3))atleast6 X2))(¬ nat_p X2)(((X1 = X4)exactly5 X1)((atleast6 X2(atleast2 X4((¬ (X5 = X3))(¬ reflexive_i (λX6 : setλX7 : set(¬ atleast2 X7))))))(((((¬ exactly2 X5)nat_p X1)(¬ atleast3 X0))(¬ nat_p X4))((atleast2 X4(¬ exactly4 X4)(¬ exactly5 X5))(set_of_pairs X5(¬ TransSet X0)))))))((((¬ exactly3 X0)(SNoLt X1 X0(¬ atleast2 (PSNo (ordsucc X4) (λX6 : set(¬ atleast5 X2)(setsum_p X0(¬ exactly5 X6)))))))(((((reflexive_i (λX6 : setλX7 : set(¬ atleast5 X6))atleast2 )setsum_p (binrep (𝒫 (𝒫 (𝒫 ))) ))atleast4 X4)(binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )) X5))((¬ atleast6 X0)exactly5 (𝒫 (binrep (𝒫 (𝒫 )) )))))(atleast4 X5(¬ ordinal X2))))))) (stricttotalorder_i (λX6 : setλX7 : setnat_p )(¬ exactly4 X2)) (¬ ordinal X4)))))set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ setsum_p X3)))(atleast5 X4atleastp X5 X4))))))(∀X3X0, ∀X4 : set, (((¬ reflexive_i (λX5 : setλX6 : setatleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))((¬ atleast4 X4)(atleast5 X4((¬ atleast5 X4)((((((¬ atleast6 X3)(((nat_p X2(atleast3 (¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))))((((((¬ atleast4 X1)(¬ atleast2 X3)exactly2 X3)SNoLe (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ) (V_ (proj1 X4)))((((TransSet X2reflexive_i (λX5 : setλX6 : set(¬ setsum_p X6)))((SNo_ X4(nat_p X3((¬ exactly4 X4)atleast3 X4)))(¬ nat_p (𝒫 X4))(((((atleast4 X3((exactly1of3 (nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))) ((PNo_upc (λX5 : setλX6 : setpropX6 X2) X2 (λX5 : set((((¬ atleast3 X4)(¬ atleast2 X4))((¬ ordinal X5)((ordinal X4((((¬ exactly5 X5)(((¬ TransSet X4)(atleast4 X2TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))(exactly3 X5(¬ nat_p X5))))((¬ inj X5 X5 (λX6 : setX5))ordinal X5))((nat_p X4(SNo X2((¬ nat_p X3)setsum_p )SNo (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))(exactly4 X5(¬ exactly2 X0)))))(((¬ exactly2 X4)(¬ tuple_p (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) X3)(¬ atleast5 X3))(((¬ exactly5 X0)(¬ exactly2 X2)atleast5 X5)(¬ atleast3 X2)))(¬ ordinal X4)TransSet X4)(¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(¬ (X5 X4))))SNo X5))((¬ atleast6 X4)(((exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))atleast5 X0)(atleast2 X3(PNoLe X1 (λX5 : setexactly2 X4) X3 (λX5 : setbij (UPair X1 X5) X4 (λX6 : setX5))(¬ (X3 X4)))))((¬ TransSet X3)(¬ exactly3 X2)))(¬ atleast3 )))((X2 X4)setsum_p X4)) (atleast2 (ordsucc X4)TransSet (lam2 X4 (λX5 : setX4) (λX5 : setλX6 : setX6)))(exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))exactly2 X1))((((¬ TransSet X3)exactly5 X4)(atleast5 X3(¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 ))) ))))(X3 = X4))))((((((symmetric_i (λX5 : setλX6 : setatleast3 (binrep (𝒫 (𝒫 (𝒫 ))) ))(((¬ ordinal X0)TransSet (binrep (𝒫 (𝒫 (𝒫 ))) ))(atleast2 X4(((¬ exactly5 X3)((¬ ordinal X3)(((ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )(((((¬ set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(((¬ set_of_pairs )((((¬ equip X4 X3)((¬ exactly3 X1)(¬ atleast4 X3)))(exactly4 X3((¬ ordinal )((¬ atleast2 X3)(partialorder_i (λX5 : setλX6 : set((exactly3 X6atleast2 X2)(¬ setsum_p X6))atleast6 X2(setsum_p X5(¬ reflexive_i (λX7 : setλX8 : set((((¬ atleast2 X8)atleast3 X7)atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(¬ SNo X8))))))exactly4 (Sing X2))))))ordinal X2((¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))(((¬ ordinal X3)(atleast4 X2atleast4 X4))((¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))atleast2 X0)))(¬ atleast2 X3)))((¬ atleastp X3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ atleast3 ))))nat_p )(¬ atleast2 X3))(atleast5 X4SNo X3)))exactly5 )(((¬ SNo (SNoLev X4))(exactly4 (SetAdjoin X0 X0)SNo X3))(((ordinal X3((atleast4 X2((¬ TransSet X4)atleast6 X2))(¬ TransSet X4)))(¬ atleast3 X2))(((¬ atleast3 (𝒫 (𝒫 (𝒫 (𝒫 )))))TransSet (V_ X1)atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))(¬ atleast4 X4))))exactly5 X1)))(nat_p X4((¬ setsum_p X2)reflexive_i (λX5 : setλX6 : setPNo_downc (λX7 : setλX8 : setprop(TransSet X7(((¬ setsum_p (proj0 X0))((X8 X7((¬ X8 X3)(¬ X8 X7)))(setsum_p X7(((¬ X8 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))(¬ atleast6 (Inj0 X1)))(¬ exactly5 (𝒫 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))))))((((X8 X5atleast4 X7)X8 X7)atleast6 X6)(¬ X8 X6))))) (SNoLev X5) (λX7 : set(((atleast6 X0atleast5 X1((¬ atleast3 X1)exactly4 X7))(¬ set_of_pairs X5))exactly5 X7)))(TransSet (mul_nat (lam2 X4 (λX5 : setX0) (λX5 : setλX6 : setbinrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))) X3)(¬ exactly2 X4))(atleast6 X2TransSet X2)(((((((((¬ PNoLt X2 (λX5 : set((¬ totalorder_i (λX6 : setλX7 : set(strictpartialorder_i (λX8 : setλX9 : set((SNo (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(¬ atleast4 X5))((exactly4 atleast4 X9)(¬ (X9 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))set_of_pairs X1)atleast2 X6)ordinal X7))(¬ SNo X0))) X3 (λX5 : set(atleast6 X5((((nat_p X4((¬ set_of_pairs X4)(¬ atleast6 X5)))((¬ ( X1))((¬ nat_p X3)TransSet X5)))(¬ atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))(¬ exactly3 X3)))(¬ exactly5 X5)))ordinal X3)atleast3 X3exactly3 X2)(¬ nat_p X3)(exactly4 X0(¬ atleast5 X2)))(((¬ exactly2 X4)reflexive_i (λX5 : setλX6 : set((¬ ordinal (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))exactly2 X0TransSet X3(atleast4 X3(((¬ TransSet X0)ordinal X4)((¬ ordinal X4)exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))))))(exactly2 X1nat_p X3((¬ exactly4 X4)(¬ exactly5 X3)))(¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))(atleast5 X2(¬ atleast3 X3)))atleastp X3 X0)atleast6 X0)))))))(¬ atleast6 X2)((¬ atleast3 X3)(atleast6 X4((¬ SNoLt (binunion (proj1 X0) X3) X4)(¬ exactly4 X4)))))(¬ (X3 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))atleast2 (Inj1 X2))(((¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))atleast5 (mul_nat (binrep (𝒫 (𝒫 (𝒫 ))) ) X3))((((¬ SNo_ X4 )atleast6 X4)(nat_p ((exactly2 (𝒫 (binrep (𝒫 (𝒫 )) ))((((¬ atleast2 X4)(¬ nat_p X2)TransSet X0)((¬ TransSet X4)(((¬ exactly2 X2)(((¬ exactly4 X0)exactly2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(¬ inj X3 X4 (λX5 : setX5)))((SNoLt X3 X3exactly4 X2)nat_p X3)))((¬ atleast5 X3)((((((atleast3 X3(TransSet X3((¬ exactly1of3 (exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))(¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 ))) ))) ((¬ atleast6 (setprod ( X0) X3))(atleast4 X1exactly5 X0)) (setsum_p (proj1 X3)))(¬ TransSet X4))))(¬ reflexive_i (λX5 : setλX6 : set(¬ SNo ))))(reflexive_i (λX5 : setλX6 : set(atleast3 atleast3 X6)(¬ ordinal X6)((¬ atleast5 X6)ordinal X6))exactly3 X4))atleast5 X3)exactly4 X1)atleast2 X3)))))(¬ exactly3 (proj0 X2))))((X2 X3)(¬ SNo_ X1 X3)))))(¬ exactly4 X3))))((¬ exactly5 X3)((((((TransSet X3((((nat_p (𝒫 (binrep (𝒫 (𝒫 )) ))(¬ exactly4 X2))exactly3 X3(¬ atleast2 X0))(¬ (𝒫 (binrep (𝒫 (𝒫 )) ) = X3)))(¬ atleast2 X3)(ordinal X1(binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ) X4))((equip X3 X4exactly5 X2)(¬ exactly4 X1))))((¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(SNoLe X3 X3atleast5 X3)))((atleast6 X4atleast4 )exactly2 (SNoElts_ X3)))((¬ atleast2 X0)(¬ nat_p X3)))(((¬ setsum_p X3)atleast3 X3)(tuple_p X2 ((((¬ exactly3 X4)exactly2 X3)(set_of_pairs X3(¬ exactly4 X4)))(¬ TransSet (ReplSep X3 (λX5 : set(exactly5 (¬ exactly3 (Sing (Inj0 X0))))) (λX5 : setX1)))))))(SNo X0(exactly2 X2(¬ exactly5 (SNoElts_ X2)))))))TransSet (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))atleast6 X0)(TransSet X0((exactly2 X3((¬ ordinal (𝒫 (𝒫 (𝒫 (𝒫 )))))(¬ TransSet X3)))(¬ atleast4 X4))))ordinal X0)))(¬ exactly2 X4))exactly5 X4))(¬ set_of_pairs (setminus X3)))((exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) )(¬ exactly5 X3))((atleast5 X1((¬ setsum_p X3)atleast3 )((SetAdjoin (Sep X0 (λX5 : set(set_of_pairs X4atleast5 X0)(exactly2 X2set_of_pairs (binunion )))) X2 = X1)ordinal ))nat_p X1))(¬ ordinal X1)))(¬ exactly4 X0)))(¬ nat_p X1))exactly5 X3)((((X4 X3)exactly4 X2)(irreflexive_i (λX5 : setλX6 : setTransSet X5)((((¬ atleast2 X4)(¬ exactly3 X4))ordinal X4)(reflexive_i (λX5 : setλX6 : set(binop_on X5 (λX7 : setλX8 : setX8)(¬ nat_p X5)))(((((exactly5 X3setsum_p )(¬ exactly2 X4)(¬ exactly3 X0))totalorder_i (λX5 : setλX6 : setatleast5 X5))(¬ atleast4 X4))atleast5 X3(¬ atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))atleast5 X3(¬ atleast2 X4))))))((set_of_pairs X0(¬ atleast5 X1)(¬ atleast4 X0))((¬ atleast6 X3)(setsum_p X4(¬ (X2 X3)))))))(atleast3 (¬ exactly5 X3)(¬ exactly5 X3)))))))(¬ strictpartialorder_i (λX5 : setλX6 : set(¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))))))((∀X3 : set, (∀X4 : set, ((¬ ordinal X2)ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))(∃X4 ∈ X1, (¬ atleast2 X1)))(∃X3 : set, setsum_p X1(∃X4 ∈ X0, exactly2 X4)))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMX4xSmGUNhKQNM3yNyEccZsdzByXU5uhPK)
∀X0 : set, ∀X1 : set, (∀X2 : set, (∀X3Sing X2, ((∀X4X1, (¬ atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))((nat_p atleast3 X4)(¬ atleast3 X4)))(∀X4X0, SNo X2(¬ exactly2 X4))))(¬ transitive_i (λX3 : setλX4 : set(¬ exactly4 (𝒫 (binrep (𝒫 (𝒫 )) ))))))(∀X2X0, (¬ atleast3 X1))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMUVz8Jxzr4H2Ce9V9bzukNJigwUCuLwyG4)
∃X0 : set, ((∀X1binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )), ((∀X2 : set, ∀X3X0, ∀X4X2, ((atleast4 X3(¬ nat_p X4))((exactly3 ( X3)exactly3 X4)((ordinal ((¬ exactly2 X3)(atleast3 X4reflexive_i (λX5 : setλX6 : set(exactly5 X5((¬ SNo X1)(((atleast3 X6(¬ TransSet X0))(((((((¬ exactly2 X5)(¬ atleast2 X2))(TransSet X6(atleast5 (((¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))nat_p X2)(¬ exactly5 X6))))((exactly4 (binrep (𝒫 (𝒫 (𝒫 ))) )atleast6 X6)(¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))))(¬ (X0 = binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))set_of_pairs X5)(¬ SNoLe X0 X2)PNo_upc (λX7 : setλX8 : setpropX8 X6) X6 (λX7 : set(¬ atleast5 X5)))(¬ atleast6 X5)))((((setsum_p X4(¬ exactly5 (SNoLev X5)))(¬ atleast5 X6))atleast2 X5)(((((¬ setsum_p X3)atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ set_of_pairs X6))atleast5 X5)((atleast6 X5(((X5 X6)(exactly4 X0(¬ exactly2 X6))(¬ ordinal X6)(¬ exactly2 X0))(¬ nat_p X6)))nat_p X0))))))))))exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))))(∃X2 : set, ((X2 X0)(∀X3 : set, ∀X4X1, (atleast3 X3(¬ totalorder_i (λX5 : setλX6 : set(¬ nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))))(¬ set_of_pairs X3))))))(∃X1 : set, ((X1 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(∀X2X1, (∃X3 : set, trichotomous_or_i (λX4 : setλX5 : set(¬ atleast6 )))(¬ exactly2 X0)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMZdfbQ2pTKeQ9qSq8HYmRvMkCx4PksbPZz)
∀X0 : set, ∀X1 : set, ((∃X2 : set, ∀X3Sing X0, ((∃X4 : set, exactly3 X4)((¬ atleast3 X0)(¬ exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))))exactly3 X1)(¬ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMd88FLDAc727XDB64c2rN4XzdLZtaNHejN)
∃X0 : set, ((∃X1 ∈ binintersect X0 X0, ∀X2X1, ∀X3 : set, (∀X4 : set, ((((¬ exactly5 X2)atleast3 )exactly3 (Sing X4))nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(partialorder_i (λX5 : setλX6 : setatleast3 X6)(¬ atleast6 X4)((¬ exactly2 X4)(inj X3 X3 (λX5 : setX3)atleast2 (𝒫 (binrep (𝒫 (𝒫 )) ))(¬ exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))))(¬ TransSet X2))((nat_p X4(¬ nat_p X1))equip X4 X2)(¬ atleast4 X3))(∃X4 : set, (atleast2 X4exactly3 (UPair X3 X2))))(∃X1 : set, ((X1 )(∀X2 : set, SNo X2(∃X3 : set, ((X3 X0)((¬ exactly4 )(∀X4 : set, atleast6 (SNoLev (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMYSn2M9kPj2zpUcv9hk7ckWXNk36n9SAPm)
∀X0 : set, (∃X1 : set, (¬ exactly4 X1)(¬ atleast5 X1))(∃X1 : set, (atleast6 X1(∃X2 : set, ((∀X3X1, (¬ atleast4 X1))(¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))))(¬ exactly4 X0))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMVwhWcK7LT2ukgF58QYYyG23q2jTU4mxmg)
∀X0binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) , ∀X1 : set, (∀X2 : set, (∃X3 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )), (SNo X3(∃X4 : set, (¬ ordinal X4)))SNo X2)(∀X3X1, ∀X4 : set, (¬ atleast6 X2)))(¬ set_of_pairs X1)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMLPBgTZc9J3zDmjvLGR3MmyYuo6zxz4P37)
∀X0 : set, (∃X1 : set, ((∃X2 : set, ((X2 X1)(∀X3 : set, (∃X4 : set, ((SNo X4exactly5 X4)TransSet X4))(∃X4 : set, ((¬ exactly2 X4)((((((nat_p X3(exactly3 X3((¬ atleast3 X0)(¬ atleast6 X2)))(¬ atleastp X3 X4))nat_p X3)exactly2 X4)atleast2 (SNoLev X0))(¬ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))(((exactly3 X4((((((exactly5 exactly3 X3)(atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))exactly3 )(¬ atleast3 X2))(¬ SNoLe X3 X4))exactly5 X2))((((tuple_p X3 X2(((((¬ SNo X3)((¬ atleast3 X1)(SNoEq_ X1 X3 (Sing X1)(¬ ordinal X3))))(¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 ))) )))(¬ atleast3 X1))((exactly2 X0(¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))atleast4 X3)))atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(¬ exactly4 X3))(exactly3 X4(strictpartialorder_i (λX5 : setλX6 : set(((¬ ordinal (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ tuple_p X6 ))(¬ nat_p (ordsucc X6))))(¬ atleast5 (𝒫 (binrep (𝒫 (𝒫 )) )))))))partialorder_i (λX5 : setλX6 : set(((¬ exactly3 X1)((exactly3 (exactly3 X5(atleast2 X5(((¬ atleast2 X6)(¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(¬ exactly4 X6))(((((X6 = X6)(¬ atleast2 X5))(¬ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) X6)))TransSet )(atleast6 X5(exactly5 X5exactly4 X5)))))))set_of_pairs X5))(¬ setsum_p X6))))))))))(∀X2 : set, (∀X3, (¬ setsum_p X0))((∃X3 : set, ∃X4 : set, (atleast4 X0(¬ exactly5 X2)(¬ ordinal X4))(atleast4 X3((¬ irreflexive_i (λX5 : setλX6 : setatleast4 X0))(atleast3 X3((¬ exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))((¬ (X3 X4))atleast3 X2)))(((¬ atleast5 X1)(TransSet X4(¬ ordinal X2))atleast5 (𝒫 (binrep (𝒫 (𝒫 )) )))setsum_p X4)exactly2 X4)))(∃X3 : set, ∀X4 : set, ((((atleastp (ap X2 ) X4(¬ ordinal X2))(exactly2 (𝒫 X0)exactly3 X3))(¬ (Inj1 X4 X3)))(((((atleast2 X4atleast3 X4)((¬ nat_p X2)exactly4 ))exactly2 X3TransSet X2)(¬ atleast4 X2))(¬ exactly3 X1)(¬ SNo X1)exactly3 X4)))))))(∃X1 : set, ((X1 Inj0 )(∀X2binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )), ∀X3binrep (𝒫 (𝒫 (𝒫 ))) , ∃X4 : set, exactly5 X3((¬ atleast3 X1)ordinal X3)((¬ TransSet X3)(¬ ordinal X4))atleast3 )))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMH1YDdzAiiBvH1vJWR2Nun4ST8C1AequwZ)
∀X0binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ), ∃X1 : set, ((X1 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )((((¬ atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(∀X2 : set, (∀X3 : set, (¬ set_of_pairs (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) X3))(((((∃X4 ∈ X2, (¬ atleast3 X3))(∃X4 ∈ X2, ((¬ atleast2 X1)((¬ atleast6 X3)(¬ nat_p X3)))))(atleast5 X2((∀X4 : set, (¬ setsum_p X4)exactly3 X4)exactly4 X0)))exactly5 (Inj1 X3))(∀X4 : set, (¬ TransSet X4)(¬ TransSet X4))))(((∀X3 : set, ∃X4 : set, ((¬ exactly2 X4)(¬ nat_p (𝒫 X0))))(∀X3X1, ∀X4X0, atleast6 X0))(∃X3 : set, ((X3 X1)(¬ atleast5 X2))))))(∃X2 : set, ((X2 X1)(∀X3binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) , (¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))))((¬ atleast4 X1)(∀X2binrep (𝒫 (binrep (𝒫 (𝒫 )) )) , atleast4 X2))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMbDpn2KqvkErnCHriG4C1R7P27tB6cNxuK)
∀X0, ∃X1 : set, ((X1 X0)(∀X2 : set, (∀X3X2, ∀X4 X3, ((atleast5 (¬ exactly4 X3))(exactly2 X3(¬ ordinal X4)))(¬ ordinal (proj1 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))set_of_pairs (In_rec_i (λX3 : setλX4 : setsetX3) X2)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMdsurnwKugxPJjtWxjRZZncG5mw6QF5t8H)
∃X0 : set, ((∀X1binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ), ∃X2 : set, ((∃X3 : set, ((X3 X2)(∀X4 : set, ((¬ atleast3 X2)ordinal X2)((atleast4 X3((atleast6 X3(¬ exactly3 X3))(¬ atleast3 X4)))(¬ setsum_p ))SNoLt X4 )))(∃X3 : set, atleast2 X2)))(∀X1X0, (X0 X0)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMGu8sTcncXK8zBCCWcM7dusc8au9PBu8T)
∃X0 : set, ((∃X1 : set, (exactly4 X1(∀X2 : set, (¬ atleast4 X1)(((∀X3X1, ((¬ exactly4 X1)(((∃X4 : set, binop_on (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) (λX5 : setλX6 : setX2))(∃X4 : set, ((((((¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))((atleast6 X1(atleast2 X3(¬ atleast6 X4)))(¬ nat_p X4)))(¬ TransSet X0))(¬ TransSet (𝒫 (binrep (𝒫 (𝒫 )) ))))(((atleast2 X4(set_of_pairs (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(set_of_pairs X0exactly4 X4)))((exactly2 X4(¬ exactly5 X3))(¬ ordinal X4))(¬ reflexive_i (λX5 : setλX6 : set(¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))))(¬ stricttotalorder_i (λX5 : setλX6 : setordinal X1))))atleast3 X4)))(¬ nat_p X2))))(∀X3 : set, atleast2 X3))(((∀X3X2, (((∃X4 : set, (exactly5 X4(((( X2 X1)(atleast5 X4nat_p X3))((¬ exactly3 X2)((atleast3 X2((((¬ atleast5 X2)atleast5 )(atleast6 X3atleast2 X4set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))exactly3 X4))(¬ exactly3 X0))))(¬ atleast4 X4))))setsum_p )(∃X4 : set, (((¬ exactly3 X1)(¬ exactly2 (𝒫 (𝒫 (𝒫 (𝒫 ))))))exactly2 X2))))(∃X3 : set, ((X3 X0)((∃X4 : set, (¬ SNo X2))(¬ atleast5 X1)))))(¬ atleast6 X0))))))(∃X1 : set, ((X1 X0)(((∃X2 : set, ((∀X3X2, (¬ transitive_i (λX4 : setλX5 : set(((atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(exactly2 X5(¬ set_of_pairs X1)))nat_p (𝒫 (𝒫 (𝒫 (𝒫 ))))PNoLt_ X4 (λX6 : set(¬ atleast3 X0)) (λX6 : set(exactly3 X6(exactly5 X6atleast5 X5))))((¬ ordinal X1)(exactly2 X3(¬ exactly2 X1)))))))(∃X3 : set, ((∀X4 : set, ((((exactly2 X4(¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))(SNo (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )(exactly3 X3(¬ exactly5 X3))))(atleast6 X4(¬ atleast3 X3)))(((TransSet X1(¬ exactly3 X2))((¬ atleast3 X4)(((¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(exactly5 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))TransSet X3))(¬ SNo_ (ReplSep (λX5 : setatleast2 X1) (λX5 : set)) X3))))(atleast2 X3(¬ atleast4 )))))((atleast2 (∃X4 : set, ((X4 X1)((¬ exactly4 (V_ X4))((¬ atleast5 )atleast4 X4)))))(∀X4X2, (¬ setsum_p X0)))))))(∀X2 : set, (∃X3 : set, ((X3 X1)atleast3 X3))exactly3 ((setsum_p X2(∀X3X1, ∃X4 ∈ V_ , atleast2 X3((¬ exactly4 X4)(¬ nat_p X3))(atleast4 (famunion (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) (λX5 : setX4))(exactly4 X4exactly2 X3))))exactly4 (V_ X2))))SNo (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMcrvt4EaWx8p9AuGo2ygyj9LQ6dBZKxuev)
∀X0 : set, (∀X1binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) , atleast2 X1TransSet )(∃X1 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) , ∃X2 ∈ X1, (∃X3 : set, ((X3 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(∀X4 : set, (atleast5 X0(¬ atleast4 X4))setsum_p X2)))(∀X3X1, (((∀X4 : set, (SNoLe X1 X4(¬ exactly3 X3))(((¬ tuple_p X3 X3)(setsum_p (binunion X4 X4)TransSet X1))PNoLt_ ( X3) (λX5 : setatleast3 X4) (λX5 : set(¬ nat_p X4))))(∀X4binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ), (¬ atleast6 (𝒫 (𝒫 (𝒫 (𝒫 )))))))((¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(∃X4 : set, ((((¬ TransSet X4)(((¬ symmetric_i (λX5 : setλX6 : set(¬ ordinal X5)))SNoEq_ X3 X4 X3)(SNo exactly2 X4)))(¬ setsum_p X3))(nat_p X0(atleast4 X4(¬ atleast2 X3)))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMaFHYVknhemg7Mm9KBpfez1FT5JdoxErcJ)
∃X0 : set, ((X0 Sep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) (λX1 : set∃X2 : set, ((X2 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))(¬ set_of_pairs X2))))(∀X1 : set, (∀X2X0, (¬ atleast6 X1))(∃X2 : set, ((X2 X1)(∀X3 : set, ∀X4 : set, ((((X2 = X4)(¬ atleast5 (binintersect X1 X4)))(((¬ ordinal X2)((¬ atleast2 X2)(atleast5 X2((((¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))(¬ atleast6 X3))(¬ exactly4 X3))nat_p X2))))(¬ SNo X3)))(¬ nat_p X2)))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMYDRbxo33KRmxxPBmp4Ee3u9uUm7DLyVhb)
∀X0binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ), ∃X1 ∈ X0, ∃X2 : set, ((X2 X1)((¬ exactly3 (lam X1 (λX3 : setX3)))(∃X3 : set, ((X3 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )((∃X4 : set, ((¬ atleast6 X4)exactly2 X4))atleast4 X3)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMGwevTsYLn6zUM8wFMqL4bA7eab3Pfd5QS)
∀X0binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) , ∀X1X0, (∃X2 : set, ((X2 X0)((∀X3 : set, ((∃X4 : set, (¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))nat_p X4)(∃X4 : set, (¬ exactly5 X1)))(∀X4 : set, nat_p X3))((¬ atleast3 X2)exactly4 X2))))SNoLt X1 X0
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMPTJg4z5s8JpcNVzqCsjVh5wCzt7kpfRa4)
∃X0 : set, ((∀X1 : set, ((∀X2X0, ∃X3 : set, (irreflexive_i (λX4 : setλX5 : set(¬ tuple_p X5 X5))(¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 ))) ))))(∀X2 : set, ((∃X3 : set, ((X3 X1)(((∃X4 ∈ X3, ((atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))((atleast2 X3(TransSet X3(((exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))(((¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(exactly4 X4atleastp X1 X1))(¬ ordinal X3)))(¬ (X3 X4)))(¬ SNo_ X3 X3))))exactly5 X4))setsum_p X1))((¬ exactly2 X0)(∃X4 : set, (¬ setsum_p X4))exactly5 X2))(∀X4X1, (¬ atleast3 X0)(¬ exactly5 (SNoLev X3))))))(∃X3 : set, ((∀X4 : set, ((((atleast3 X1(((¬ SNoLe X1)(¬ exactly2 X4))exactly5 ))nat_p )TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(((atleast4 X1exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))SNo X0)nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))(((atleast5 X3(¬ (X1 X2)))(¬ (X2 X0)))(binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) X3)))((atleast4 X3(¬ ordinal ))(∃X4 ∈ X0, (¬ atleast4 X0)(¬ nat_p X3))))))(∀X3 : set, (∀X4 : set, (setsum_p X2(¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))))(((∀X4X1, (atleast2 X2((set_of_pairs ((((¬ TransSet X0)(¬ atleast3 X4)atleast3 X4)((¬ exactly5 )((¬ exactly2 X2)atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))ordinal X2))ordinal (Pi X3 (λX5 : setX4))))(atleast2 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(¬ TransSet ( X3))))(∀X4 : set, atleast3 (nat_primrec X0 (λX5 : setλX6 : setX5) X4)(¬ ordinal X3)))(∀X4X1, (¬ SNoLe X2 X3)(((¬ atleast6 X3)((¬ atleast3 X3)exactly4 X3))set_of_pairs X0)(¬ atleast5 X4)))))))(∀X1 : set, ∀X2X0, exactly5 X1))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMKiEVp78PBwxV5kBBRkHR3qw4ZnAoJtG6G)
∃X0 : set, ((X0 )(∃X1 : set, (((∃X2 : set, ((X2 X0)(∃X3 ∈ X2, ∀X4X2, ((((((exactly4 atleast3 X4)(¬ set_of_pairs X4))(¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))ordinal )((¬ setsum_p )nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))(¬ atleast2 ))atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))))(∀X2X1, ∃X3 : set, ∃X4 : set, ((¬ setsum_p (SNoLev (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))(((¬ SNoLt X4 X4)(¬ SNo (Sing X2)))(exactly4 (((¬ exactly3 X4)atleast3 X1(¬ SNo X4)(exactly4 X4(¬ strictpartialorder_i (λX5 : setλX6 : set(¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))ordinal X5))))((exactly2 X2(¬ atleast3 X4))(PNo_downc (λX5 : setλX6 : setprop(X6 X4(((¬ X6 X5)(((((¬ X6 X1)(¬ (X2 X5)))(¬ ordinal X0))(((¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ SNo_ X0 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))((¬ atleast6 X5)X6 ))(¬ X6 X4))((¬ X6 X5)(X6 X5exactly3 X0))))(¬ exactly5 X3)))) X3 (λX5 : set(((¬ atleast5 )(¬ PNoLt_ X5 (λX6 : set(¬ atleast5 X6)) (λX6 : setTransSet X6)))exactly3 X2))(((trichotomous_or_i (λX5 : setλX6 : setatleast2 X4)(((¬ atleast6 X4)(¬ (ordsucc X4 X1)))((SNo_ X3 X0exactly2 X1)(TransSet X0(¬ equip X4 X4))))exactly5 X2)((exactly3 X0atleast6 X4)atleast4 X4)(atleast4 X4(¬ (X2 binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))))(¬ atleast2 X2)))))(¬ TransSet ))(((((¬ exactly1of2 (atleast2 X2) ((((X4 = X3)atleast5 X3)(¬ atleast5 ))TransSet X3))(exactly5 X2(¬ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )) X3))))((((((¬ reflexive_i (λX5 : setλX6 : setordinal (𝒫 (𝒫 (𝒫 (𝒫 ))))))((¬ exactly2 )atleast5 ))atleast4 X1(((¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))nat_p X3)((((atleast6 X0SNo X3)(¬ atleast3 X4))exactly3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))exactly3 X3)))exactly3 X3)(¬ stricttotalorder_i (λX5 : setλX6 : setatleast5 X6(ordinal X6((((setsum_p X2TransSet X6atleast6 X6)((exactly4 ((((atleast2 X1(nat_p X6(((exactly5 X6((¬ exactly4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ atleast6 X6)))atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )(¬ reflexive_i (λX7 : setλX8 : set(¬ atleast4 X8))))((atleast6 X5((¬ atleast3 X5)nat_p X5))(((¬ exactly3 X0)((¬ nat_p X5)(((¬ TransSet (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(¬ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ) binrep (𝒫 (𝒫 (𝒫 ))) )))((exactly4 (Sing )(¬ ordinal (PSNo X5 (λX7 : set(¬ reflexive_i (λX8 : setλX9 : set(¬ exactly4 X9)))exactly4 X0)))exactly2 X5)(¬ nat_p X5))(¬ exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))))(¬ exactly3 X6))))))(nat_p X6(¬ (X5 𝒫 (binrep (𝒫 (𝒫 )) )))))exactly5 X5)exactly5 X6))totalorder_i (λX7 : setλX8 : set((¬ TransSet X7)nat_p X8)exactly2 X6)))exactly3 (binunion X6 X6))((¬ antisymmetric_i (λX7 : setλX8 : set(¬ set_of_pairs X3)))(((¬ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(¬ exactly4 X6))atleast4 X2)))))))((((¬ SNo X0)((SNoLe (proj0 X4) (exactly5 X3(¬ atleast5 X2)))((¬ setsum_p X3)((¬ exactly2 X0)((SNo X1(((¬ SNo_ X4 X3)(atleastp X4 (Sing X4)ordinal X1)(¬ ordinal (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(atleast2 X4(¬ ordinal X4)))(SNo X2(¬ TransSet X4)))ordinal X4)ordinal X3)(¬ exactly5 X3)))))(exactly2 X2atleast4 X3))exactly2 X4)))SNo (V_ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))((¬ atleast4 X2)(exactly5 X4TransSet X4))))(((((((set_of_pairs X1(¬ set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))(¬ PNoLe X1 (λX5 : set(SNo X4set_of_pairs X3)ordinal X5) (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) (λX5 : set((¬ reflexive_i (λX6 : setλX7 : setexactly4 X6))(¬ exactly4 (𝒫 (binrep (𝒫 (𝒫 )) )))))))(¬ atleast5 X1)(atleast2 X2atleast6 X2))exactly2 )((¬ (X2 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))((¬ exactly2 X1)atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) ))))(¬ atleast5 X2))exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))(¬ exactly5 X0)))(∀X2 : set, ∀X3 : set, ∀X4X2, ((((((¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(((¬ atleast4 X4)atleast4 X2)atleast6 X0))((¬ exactly3 X3)((¬ atleast6 X1)((¬ atleast4 X3)(((¬ SNo (𝒫 (binrep (𝒫 (𝒫 )) )))((SNo_ X3 X3(¬ nat_p X4))((((¬ irreflexive_i (λX5 : setλX6 : setnat_p X5))(¬ ordinal X4))(((((exactly2 (Inj1 X1)(((atleast3 X3setsum_p X4)(¬ nat_p X4))((¬ exactly2 X3)(((¬ exactly3 X3)(¬ exactly5 X4))((¬ TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ exactly5 X4))))))(¬ ordinal X0))nat_p X3)(¬ nat_p X0))((((((¬ atleast6 X3)atleast2 (𝒫 (𝒫 (𝒫 (𝒫 )))))(¬ atleast3 X3))nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ SNo X3)(¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))(¬ atleast2 X0))))(¬ PNoLe X3 (λX5 : setordinal X4) X0 (λX5 : set(¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))))))(((atleast3 X4(¬ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))((((((((¬ nat_p X1)(X0 )((¬ nat_p X2)(¬ exactly5 X3)))(¬ exactly5 X2)set_of_pairs ( X1))eqreln_i (λX5 : setλX6 : set((((atleast2 X4exactly5 X6(¬ exactly2 X5))((¬ ordinal X6)(((linear_i (λX7 : setλX8 : setexactly5 X8)(symmetric_i (λX7 : setλX8 : setordinal X8)(¬ ordinal X6)))exactly2 X6)exactly3 X6)))equip X5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(((¬ strictpartialorder_i (λX7 : setλX8 : set((¬ SNoLt X7 )(ordinal X7atleast3 X7))))((¬ TransSet X3)exactly5 X6))(((¬ atleastp X5 X5)(((¬ TransSet )(((ordinal X1(atleast6 X0(¬ SNo_ X5 (binrep (𝒫 (𝒫 (𝒫 ))) )))(atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))((¬ set_of_pairs X0)exactly3 X5))(((((atleast6 X5(¬ PNoEq_ X0 (λX7 : set(((¬ TransSet X7)(¬ TransSet X4)((exactly5 (TransSet X0atleast2 X6))(((atleast3 X7(¬ setsum_p X6))(¬ ordinal X6)atleast3 X1)atleast5 )))(exactly4 X7(((exactly3 ordinal X1)(¬ atleast6 X7))(¬ exactly2 X6))))TransSet X6) (λX7 : set(¬ SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))))exactly4 X5)(¬ exactly3 X6))tuple_p X6 X6(((¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))exactly5 (𝒫 X4))(¬ ordinal X0)exactly2 X6)(((((¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))((¬ exactly2 X5)((reflexive_i (λX7 : setλX8 : set((¬ exactly4 X8)((¬ TransSet X8)(exactly4 X8(¬ transitive_i (λX9 : setλX10 : set(ordinal X4(TransSet X9(TransSet X9(¬ (X10 X9)))))))))))((exactly4 X6ordinal (binrep X6 X5))SNo X6))((¬ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))))(¬ atleastp X4 X5))((¬ exactly2 X0)((¬ atleast5 X5)exactly4 X6)))((¬ TransSet X5)(((((atleast3 X0TransSet X3)((¬ exactly3 X5)((¬ ordinal X0)atleast4 X0setsum_p X6((¬ atleast2 X2)exactly2 ))))atleast3 X6TransSet (UPair X5 X5))(¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))(((atleast5 X4((¬ atleast4 X6)atleast4 X6))((atleast5 X5exactly3 X6)((¬ setsum_p X5)(¬ atleast4 X6))))(¬ exactly3 X5))))))(¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))))(¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))(exactly2 TransSet X5))))(((nat_p X5((¬ exactly5 X5)ordinal X0))((¬ exactly2 )nat_p X0((¬ atleast4 X6)set_of_pairs X5)(¬ exactly3 X5))(¬ exactly4 (Unj (𝒫 X5))))((¬ atleast3 X5)((atleast4 X6(¬ atleast2 X4))SNo_ X5 (𝒫 X4))))))(¬ exactly2 (ordsucc (Inj0 X4))))(¬ TransSet X3))((¬ atleast3 X1)((((¬ atleast4 X4)exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(((SNo X4(¬ ordinal X0))atleast3 X3)(nat_p X4(nat_p (ordsucc X2)(¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))))(¬ atleast2 X4))(¬ equip (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ) X4))))(((ordinal (¬ reflexive_i (λX5 : setλX6 : set(nat_p X5(PNoLe X2 (λX7 : setTransSet X6((((nat_p X7atleast4 (UPair X2 (𝒫 (binrep (𝒫 (𝒫 )) )))((¬ atleast5 X0)(exactly5 X0(¬ nat_p X7))))(atleast2 X7(set_of_pairs X6(¬ atleast6 (𝒫 (𝒫 (𝒫 (𝒫 ))))))))setsum_p X4)atleast2 X7)(exactly5 (X2 X6))) X6 (λX7 : set(¬ SNo )atleast6 X7)((¬ atleast4 X6)(¬ nat_p X6))(¬ (X6 X6))))))((¬ atleast3 X4)(¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 ))) ))))(¬ exactly3 ))tuple_p X3 X0)))(setsum_p X3atleast6 X3)exactly3 X1(¬ set_of_pairs X3)))))))(atleast6 X2(¬ nat_p X4)))(atleastp X4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))(atleast3 X4exactly5 X1)))(¬ exactly3 X2))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMVixMcejXURDNZndYwXpogcwCpVfq4B7FG)
∃X0 : set, ((∃X1 ∈ binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ), ∃X2 : set, ((X2 binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )((¬ atleast2 X2)(¬ nat_p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))))(∃X1 : set, ((TransSet X1(¬ exactly2 X1))(∃X2 : set, (∀X3 : set, ((¬ equip X3 )(exactly2 X3exactly4 X2))((∀X4 : set, atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(∀X4 : set, atleast3 X4((((PNoLe X4 (λX5 : set((((PNoLt X2 (λX6 : setexactly2 X6) X4 (λX6 : set((¬ atleast4 (V_ X5))(((¬ atleast5 X5)exactly5 X5)exactly3 X0((exactly3 X6exactly2 X5)((¬ SNo X6)((SNo (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(((ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(TransSet X5(¬ (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) = X6))))(((¬ atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))atleast3 X4)(¬ atleast5 X5)))stricttotalorder_i (λX7 : setλX8 : setatleastp X8 X7)))(¬ atleast6 X2))))))(atleastp (Sing X6) X3(exactly5 (ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )(¬ atleast5 (SNoLev ))))))(((¬ atleast3 )(¬ SNo X2))((¬ atleast3 X5)((((((atleast4 (If_i ((¬ exactly5 X2)(¬ atleast3 X4)) X4)atleast5 X4)(¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))atleast2 X5(¬ atleast3 X5))((PNoLt X5 (λX6 : setequip X2 X2(((¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(¬ exactly3 X3))(TransSet X5SNo X5))(atleast2 X6((¬ exactly5 X1)(¬ PNo_upc (λX7 : setλX8 : setprop(((¬ X8 X4)(X8 X6ordinal X6))((((¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))((binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) X0)(¬ exactly3 (Inj0 X7))))((X8 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )(¬ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))(¬ exactly5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))))(¬ atleast5 X7)))(exactly4 (V_ )per_i (λX9 : setλX10 : set(¬ atleast4 X4)))) (nat_primrec (Unj X0) (λX7 : setλX8 : setX2) X0) (λX7 : set((¬ exactly2 X7)nat_p X6)(equip X2 TransSet X7)))))) X4 (λX6 : settransitive_i (λX7 : setλX8 : set(¬ exactly4 X8)))((¬ TransSet X4)(¬ set_of_pairs X5)))exactly3 X0))(((¬ ordinal X0)(((((((((¬ SNo X4)(¬ atleast5 X4))(¬ atleastp X2 X1))(¬ atleast5 X4))((SNo_ X4 X5(¬ exactly3 X5))(¬ atleast2 X2))(¬ exactly5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))ordinal X5)(((¬ exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))nat_p X0)(¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))(¬ atleastp X1 X4))((¬ nat_p ( X4))(atleast4 ((binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) X0)(set_of_pairs X5(atleast2 X5(¬ atleast3 (ap (ordsucc X4) X4)))))))))(atleast2 X4(ordinal X1((atleast5 X0(¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(¬ exactly4 )(¬ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))))))(((¬ reflexive_i (λX6 : setλX7 : setatleast4 X0))exactly2 (Unj X4))exactly2 X4))((¬ atleast2 X4)((atleast5 X5(¬ atleast4 X5))atleast4 X5))))))((¬ exactly3 X3)atleast6 X4))atleast6 X4)nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))) X4 (λX5 : setexactly5 X3(¬ TransSet X5)(¬ exactly5 )(¬ atleast6 X4))TransSet X3)(((((atleast4 X2(exactly2 X1(¬ exactly2 X4))(TransSet X3SNoEq_ X4 (SetAdjoin X4 X2) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))((¬ exactly3 X1)((((¬ atleast5 X1)(¬ irreflexive_i (λX5 : setλX6 : set(¬ atleast4 (Inj0 X6))exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))((¬ exactly5 (ap X3 ))(((¬ equip X2 X0)(((¬ exactly4 X4)(atleast3 X2(exactly3 X0(¬ exactly4 X4))))atleast2 X3ordinal X2)((¬ atleast6 X3)atleast4 X1)atleast2 X3)tuple_p X4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))))((ordinal X1(exactly3 X3(X1 X4)))ordinal X2))(¬ TransSet X4))))((((setsum_p X3((¬ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ atleast5 X3)))atleast2 X2)SNo X2(¬ nat_p X2))(¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))))TransSet X4)(¬ exactly3 X4)))(((((¬ atleast6 X3)((¬ atleast4 X2)(atleast4 X4(¬ exactly2 (V_ X0)))))((atleast4 X0(¬ exactly2 X4))(¬ nat_p ( X3))))(atleast2 X4((reflexive_i (λX5 : setλX6 : set(¬ atleast3 X6))atleast5 X2)(¬ atleast5 X3)))(((atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )atleast5 X3)(atleast6 X2(¬ exactly4 X4)))(ordinal X4stricttotalorder_i (λX5 : setλX6 : setexactly3 X5))))((¬ atleast5 X3)(¬ TransSet X3))))exactly3 X3))))(∃X3 : set, ((X3 )exactly3 X1))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMnUesxvyUL6bRzWvP9pjfWuYUkaxsFnG4)
∃X0 : set, ∀X1X0, (∃X2 : set, ((X2 X1)((¬ (X2 X2))(∃X3 : set, (atleast6 (binunion X1 X2)(∀X4 : set, (¬ totalorder_i (λX5 : setλX6 : set(¬ atleast5 X5)atleast3 X0))ordinal X2))))))(∃X2 : set, TransSet X0)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMJ6ZeDUw1aJhA4CfoNYh8F9HCaP5mSdgeF)
∃X0 : set, ((∃X1 : set, ((∀X2X0, ((¬ nat_p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ reflexive_i (λX3 : setλX4 : setatleast2 X2))))(¬ atleast4 X0)))(∃X1 : set, (¬ setsum_p X1)((¬ atleastp X0 X1)(∃X2 : set, ((¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))(∃X3 : set, (((¬ exactly4 X0)(∃X4 : set, (((atleast6 X2(¬ atleast4 (𝒫 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))))ordinal X4)(((¬ atleast5 X3)((¬ atleast5 X2)((((exactly5 X0((¬ atleast2 X4)(¬ atleast4 X4)))(¬ exactly4 X4))ordinal X4)(¬ (X3 X3))))(¬ exactly3 X3))(¬ TransSet X4)))))(∃X4 : set, ((X4 X2)(((¬ exactly5 X2)((¬ exactly4 X2)((((¬ TransSet X4)ordinal X4)(¬ reflexive_i (λX5 : setλX6 : setatleast4 X5)))((ordinal X3exactly2 X1)(¬ (𝒫 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) = X3))))))atleast4 X4))))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMbYhqVfLkEJK36z7kmbrVppsmkprngBiAs)
∃X0 : set, ((X0 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))(∀X1 : set, (((∃X2 : set, (atleast5 X2(∃X3 : set, ((X3 X0)(∃X4 : set, (¬ nat_p X0))))))(∀X2 : set, ∃X3 : set, ∃X4 : set, (¬ atleast6 X4)))(∃X2 : set, ((X2 )exactly3 X0))(∀X2 : set, (∀X3SetAdjoin (add_nat X1 X1) X0, atleast2 X2)(((∃X3 : set, (((∃X4 ∈ X0, (((¬ TransSet X2)exactly4 X1)(strictpartialorder_i (λX5 : setλX6 : set(atleast3 X5(reflexive_i (λX7 : setλX8 : setatleast6 X8((((¬ ordinal (SNoElts_ X4))(¬ atleast3 X5))(atleast5 X8exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))(((binrep (𝒫 (𝒫 (𝒫 ))) = binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(¬ nat_p (𝒫 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))(¬ exactly5 X7)exactly4 X7((TransSet (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))(¬ atleast6 X7)))))(¬ exactly5 X3))(¬ atleast5 X6))(¬ atleast6 X6))(((TransSet X3(¬ exactly2 X3))(atleast2 X0((¬ atleast5 X2)exactly3 X3)))SNoLt X4 X1))))exactly3 X3)(∃X4 : set, ((X4 X3)SNo X3))))(∀X3 : set, (∃X4 ∈ X2, nat_p X2)(∀X4 : set, ((¬ exactly5 X3)((set_of_pairs X4(¬ atleast4 X1))(exactly4 X4atleast4 X3))))))(∃X3 ∈ X0, ∃X4 : set, ((atleast5 X0setsum_p X3)(((𝒫 (𝒫 (𝒫 (𝒫 ))) X4)atleast4 X4)((¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(¬ PNo_downc (λX5 : setλX6 : setprop(¬ X6 X0)) (𝒫 (𝒫 (𝒫 (𝒫 )))) (λX5 : setset_of_pairs X5))))))))(∀X2 : set, ∀X3X2, ∀X4 : set, ((¬ atleast6 X2)exactly3 X4)))(∀X2 : set, (atleast5 X1(∀X3 : set, ((¬ atleast3 X2)exactly4 X1)exactly5 X2))(¬ exactly4 X1))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMQiDXhTCVnrSXBHVmekCdagS2svJjizXE2)
∃X0 : set, ((X0 proj0 (binrep (𝒫 (𝒫 (𝒫 ))) ))(∀X1 : set, ∃X2 : set, ((X2 mul_nat X1 X1)(∀X3 : set, (∃X4 : set, ((equip (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))) X3((atleast2 (binrep X3 X4)atleast2 X4(¬ atleast3 X4))((((tuple_p X4 X4(((exactly2 (V_ X1)atleast5 X2)(setsum_p X3(((¬ atleast2 X4)(((reflexive_i (λX5 : setλX6 : set(¬ antisymmetric_i (λX7 : setλX8 : setexactly4 (binunion X7 X8))))((¬ nat_p X4)SNoLe (ordsucc (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )) X4))(partialorder_i (λX5 : setλX6 : set(¬ atleast5 X0))atleast6 X3))((nat_p (𝒫 (𝒫 (𝒫 (𝒫 ))))((¬ atleast3 X3)(((TransSet (ordsucc X1)((¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))exactly3 X3))ordinal X4)((¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))(¬ atleast5 X4)))))ordinal X4)))((¬ linear_i (λX5 : setλX6 : set(atleast4 X3((¬ atleast2 )((atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(¬ atleast6 X5))(¬ exactly4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))))))(¬ nat_p X4)))))(¬ atleast2 X4)))(¬ atleast2 X0))TransSet X4)(¬ exactly4 (ordsucc X3)))))(atleast3 (((¬ atleast3 )(¬ ordinal X0)(¬ SNo X3))(¬ atleast6 X2)))))(∀X4X3, atleast5 X4)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMLwHSFQaUB3Hx7W8hXJQ6tm4WuKxmknstB)
∀X0 : set, (∀X1V_ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ), ∀X2 : set, (∀X3, atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(∃X4 : set, atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) )))(∃X3 ∈ X1, atleast3 X2))(∀X1X0, ((∀X2X1, (∀X3 : set, atleast2 X3(¬ atleast2 X1))(∃X3 ∈ X0, ∃X4 : set, exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(exactly5 X4(exactly4 (If_i ((((SNoLt X3 X4(¬ atleast3 X2))(atleast3 X4(set_of_pairs X0(atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))(¬ atleast2 X3)))))(((TransSet X0(¬ atleast6 X4))((X4 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(¬ exactly2 X3)))((¬ exactly5 X3)(¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))))TransSet X4) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ) X2)(¬ atleast4 X0)))(¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))))(∃X2 : set, ((∀X3 : set, atleast6 X1)(¬ setsum_p (𝒫 (𝒫 (𝒫 (𝒫 )))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMNrmQKowNAQnFa6q3vRC2Rr5R1yBULQbX6)
∃X0 : set, ((X0 binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(∃X1 : set, ((X1 X0)(((¬ nat_p X1)(∃X2 : set, ∃X3 : set, ((X3 X0)(∃X4 : set, ((¬ strictpartialorder_i (λX5 : setλX6 : setatleast4 X6))(((¬ atleast4 X0)equip X3 X1)ordinal X2))))))(¬ nat_p X1)(∀X2 : set, (TransSet X2exactly5 X1)((∃X3 : set, ∀X4binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) , exactly1of2 (¬ exactly3 X3) (nat_p X3atleast4 X4))(∃X3 : set, ((∀X4X3, atleast5 X4)(((∀X4binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ), ((¬ SNo X4)(((¬ exactly2 X3)(¬ atleast2 X0))(((¬ atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(exactly5 ( X3)(((((((per_i (λX5 : setλX6 : set(SNoLt X6 (¬ set_of_pairs X6))(X3 X0))nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))(¬ atleast5 X3))exactly4 X3)((¬ atleast2 X4)((¬ atleast5 X2)(¬ atleast4 X4)atleast5 X4)))nat_p (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))))((¬ atleast3 X3)(¬ atleast2 X4))))))(∃X4 : set, ((X4 X1)atleast3 X4)))(∀X4 : set, (¬ atleast2 X0)nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMVZ7DXgx9MNNfQgScWd3d2jWQT4skiP3gZ)
∀X0Sing , ∃X1 : set, ∀X2 : set, atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )((∀X3X0, ∀X4 : set, (¬ (X4 X3))equip (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ) X3(TransSet X2(¬ exactly3 X4)))(∀X3 : set, ∃X4 : set, ((¬ setsum_p X3)exactly5 X2)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMGRGzitdJRMjtMUfsBzgPf22qu9F5cwJ2A)
∃X0 : set, ((∃X1 : set, ((∀X2 : set, ∃X3 : set, ((∀X4 : set, (¬ atleast5 (binunion X3 X4))(¬ exactly4 X4))(∃X4 ∈ X3, exactly2 X1(atleast6 X4((¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) ))(¬ exactly3 X4)))(SNo_ (Inj1 X2) (𝒫 (binrep (𝒫 (𝒫 )) ))(exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )setsum_p X4))))(∃X4 : set, (((¬ (X4 X3))exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))(((¬ nat_p X3)(¬ exactly3 X4))((¬ setsum_p X1)(atleast3 X3(¬ exactly3 (𝒫 (binrep (𝒫 (𝒫 )) )))))))))(∀X2, ∃X3 : set, ((∃X4 : set, ((¬ exactly2 X0)((¬ SNo X2)((((((exactly2 X3(SNoLt (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ) ( X2)atleast3 exactly2 X3(¬ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )) X3))))TransSet )((X2 X3)exactly3 ))nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))exactly3 X4)((((¬ atleast6 X3)(¬ atleast4 (Pi X2 (λX5 : setX4))))((setsum_p X4(¬ ordinal X2))(((¬ atleast5 X2)TransSet X0)SNo_ X3 X0)))SNo (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))))(∀X4 : set, ((¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(setsum_p X2((atleast4 X2(¬ atleast3 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))(¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))))exactly4 X4)))))(∀X1X0, (∃X2 : set, ((∃X3 : set, ∀X4 : set, (¬ exactly4 X3))exactly5 X2))(¬ atleast5 X1)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMdMRveZy7wUJYeTMY4YLEM3pAys2kTnK9y)
∀X0𝒫 (𝒫 (𝒫 (𝒫 ))), ∃X1 : set, ((atleast6 (∃X2 : set, ((X2 )(∃X3 : set, ((¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(∀X4X2, (¬ SNoLt (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) X0)))))))((∃X2 : set, ((X2 X1)(∃X3 : set, ((∃X4 ∈ binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) , atleast6 X3)atleast2 (𝒫 (𝒫 (𝒫 (𝒫 ))))))))(∀X2X0, ∀X3X2, ∃X4 ∈ X2, (atleast3 X4(¬ set_of_pairs (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMYeaSSwNJXtruA4Pc2oMUzyFq9jDp3KFVV)
∃X0 : set, ((∀X1binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) , ((((¬ atleast6 )(exactly3 X1((∀X2binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) , exactly5 X1)((∃X2 : set, ((∃X3 : set, ((∀X4𝒫 (binrep (𝒫 (𝒫 )) ), ((((((¬ atleast4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))nat_p (Sep2 X4 (λX5 : setbinrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) (λX5 : setλX6 : setTransSet (Sing ))))((exactly4 (𝒫 (𝒫 (𝒫 (𝒫 ))))(¬ SNoLe X4))(¬ ordinal (lam2 (PSNo X0 (λX5 : set(atleast5 X5(atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) )(((exactly5 X5((¬ exactly4 X3)tuple_p X5 X5)((atleast3 ((¬ atleast2 ( X5))(¬ atleast6 X1)))((X5 X4)(¬ exactly2 X4)))(ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))((¬ atleast2 X3)((((¬ ordinal X3)((((¬ exactly5 (𝒫 (𝒫 (𝒫 (𝒫 )))))((¬ exactly2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))ordinal X1))((((atleast6 X2((((((((((¬ atleastp X4 X5)nat_p X2)(¬ setsum_p X3))(eqreln_i (λX6 : setλX7 : set(¬ tuple_p X6 ( X7)))exactly4 (binintersect X5 X4)))(¬ exactly2 ))(¬ atleast6 X5))((atleast2 X1(¬ exactly2 X1))(¬ TransSet X4)))TransSet X4(¬ atleast2 X3))exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ exactly2 X0)))exactly4 X4)(¬ atleast6 X5))((((setsum_p X5((exactly5 X4SNo X0)(¬ atleast2 X0)))(¬ exactly3 X5))atleast3 X1exactly5 X5)(((atleast4 X4(¬ exactly5 X4)((¬ nat_p X5)((¬ exactly4 (𝒫 (𝒫 (𝒫 (𝒫 )))))atleast5 X4)))((exactly3 X4(TransSet X5(¬ atleast6 X2)))atleast3 X4))((¬ atleast5 X1)(¬ SNo X2))))))SNo X0))(((tuple_p X5 X4(((¬ (X0 = X5))(((¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))((¬ atleast5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ ordinal X4)))(¬ atleast4 X4)))ordinal X5(((((¬ nat_p )atleast5 X5)((¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))(¬ nat_p X1))(atleast6 ((¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ SNo_ X5 X4)((atleast2 X4(¬ tuple_p X5 X5))(¬ atleast5 X4)))))((¬ exactly3 X4)(¬ exactly4 X2))))atleast6 X1(¬ atleast3 (𝒫 (𝒫 (𝒫 (𝒫 )))))(¬ atleast6 X1))atleast3 X5))((exactly5 X4atleast5 X5)(((atleast2 X4((X5 X3)setsum_p X5))exactly2 X5(¬ TransSet X5))(((exactly3 X5(¬ (SNoElts_ (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ) X4)))((symmetric_i (λX6 : setλX7 : set((¬ (X6 X6))(¬ atleast5 X7))equip X7 X7)((¬ atleast5 X5)(¬ atleast4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ ordinal X4)))(¬ nat_p X5)(((¬ atleast2 X2)(exactly2 (¬ exactly4 )))ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))(X4 X2))))))))(exactly4 X5TransSet X3))((exactly5 X5(exactly2 X4atleast5 X4))((((¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(nat_p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )atleast2 X4exactly2 X0nat_p (binintersect X0 X4)atleast5 X4(¬ ordinal X4)))(¬ ordinal X3))))))exactly5 )) (λX5 : setX4) (λX5 : setλX6 : setX2)))))(¬ atleast6 X1))atleast4 X0)(¬ SNoLt (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ) (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))))(∃X4 : set, ((X4 X0)(¬ exactly4 )))))(∃X3 : set, ((X3 X2)(¬ atleast3 (Sing X2))))))(∃X2 : set, ∀X3X1, ((∀X4 : set, (¬ ordinal X3)(atleast3 X4((¬ ordinal X4)(( X4)(¬ ordinal X2)))))(∃X4 ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ), exactly2 X2)))))))(¬ exactly5 X0))(∃X2 : set, (((¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))SNoLe X1 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))((∃X3 ∈ X0, (X0 X3))(((¬ setsum_p (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))atleast4 X2)(∀X3X1, ∃X4 : set, ((X4 X2)((¬ PNoLe X0 (λX5 : set(((¬ ordinal X3)((¬ atleast2 X5)(¬ atleast6 X5)))(¬ atleast6 X2))) (λX5 : setsetsum_p X5))((¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))((((¬ atleast5 )(¬ atleast3 X4))atleast2 X4)(¬ atleast3 X2)atleast5 X3)))))))))))(∀X1setprod (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))), (∃X2 : set, ∀X3X1, exactly4 X2)((∀X2X1, ∀X3X1, ∀X4, (exactly5 X0(X2 = X0)))(∃X2 : set, ((X2 X0)(¬ exactly3 X2))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMREXQphuHq9Dvfg2xNWBvgSUGbgkuSnw5W)
∃X0 : set, ((∀X1X0, ∃X2 : set, (¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))(∀X1 : set, ∃X2 : set, ((X2 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))(∀X3 : set, ((¬ exactly2 X2)(¬ atleast4 X0))(¬ exactly5 (UPair X2 X2))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMTjkNWK8NAMcwjKeVU1h6xcJ6dMs6LN8dT)
∀X0binrep (𝒫 (𝒫 (𝒫 ))) , ∀X1 : set, ((∃X2 ∈ binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) , ∀X3 : set, (∃X4 ∈ X3, atleast6 X3)(∃X4 : set, ((atleast3 (V_ X2)(((¬ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))set_of_pairs X4)(¬ totalorder_i (λX5 : setλX6 : set((¬ set_of_pairs )((exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(¬ exactly4 X5))((¬ SNoLe X6 X5)(¬ atleast5 X2))))))))(((¬ exactly5 (𝒫 (𝒫 (𝒫 (𝒫 )))))(reflexive_i (λX5 : setλX6 : setatleast6 X2)(¬ (𝒫 (𝒫 (𝒫 (𝒫 ))) 𝒫 (𝒫 (𝒫 (𝒫 )))))))((((¬ atleast2 X2)((¬ exactly5 X3)atleast2 X1))(¬ exactly3 X4))(((¬ atleast3 X2)(¬ exactly2 X4))((¬ atleast3 X4)(¬ atleast3 X4))))(¬ atleast6 X3)))))ordinal X0)(∀X2 : set, ((∃X3 : set, ((X3 )(¬ atleast3 (𝒫 (𝒫 (𝒫 (𝒫 )))))))nat_p X1)(∃X3 ∈ X0, ∃X4 ∈ Unj X3, inj (binrep (𝒫 (𝒫 (𝒫 ))) ) (binunion X1 X4) (λX5 : setbinrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMRUFsZWoiozZr1cMsZUie61yhWWcVs5hML)
∃X0 : set, ((X0 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))(∀X1UPair X0 X0, ∀X2 : set, ∀X3 : set, (((¬ atleast2 )(∀X4 : set, (¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(¬ exactly5 X3)(exactly5 (Inj1 X4)((¬ set_of_pairs X3)(¬ set_of_pairs X4)))((exactly4 X4((¬ atleast4 X4)exactly5 X4))(¬ exactly5 X4))))((((¬ setsum_p (setsum X0 X0))(¬ atleast6 X0))(∀X4 : set, (¬ atleast5 (ordsucc X2))(¬ nat_p X2)))atleast6 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMRwYWsqPf79Ubk6dYfLXVwXGu1yvJMDyB5)
∃X0 : set, ((∃X1 : set, (nat_p X0(∃X2 ∈ X1, ∃X3 : set, ((X3 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(((∀X4 : set, (¬ atleast3 X0)(¬ ordinal )(¬ atleast4 X3))(∀X4X1, exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))(∃X4 : set, (¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))))))(∃X1 : set, ((X1 )(∀X2 : set, (∃X3 ∈ X2, ∃X4 : set, (TransSet X3TransSet X2))setsum_p (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))ordinal (∃X3 : set, ((∀X4X2, (¬ atleast6 X1))((∃X4 ∈ X2, atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))(∃X4 : set, ((X4 binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))exactly3 X4)))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMdJRMR59W1AcGaHbAjpQL9jE2u9MQAgVuW)
∀X0 : set, ∀X1X0, (∀X2X0, ∀X3 : set, (∀X4 : set, (¬ TransSet X2))(∃X4 ∈ , ((¬ linear_i (λX5 : setλX6 : set(((¬ SNo X5)((¬ nat_p (Inj0 (𝒫 (binrep (𝒫 (𝒫 )) ))))((¬ linear_i (λX7 : setλX8 : set((atleast3 ((((SNo X7set_of_pairs X2)(atleast2 X8(atleast5 X2nat_p X8)))(exactly3 X5((¬ nat_p X2)(nat_p X7atleast6 X8(¬ nat_p X6)))((TransSet X7exactly4 )atleast5 X8)))((atleast5 X8partialorder_i (λX9 : setλX10 : set(¬ exactly3 (Repl X10 (λX11 : setX11))))((atleast5 X0((X8 X5)((¬ atleast5 X8)(atleast3 (proj1 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(((exactly4 ((¬ TransSet X2)(((exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )nat_p X8)exactly4 X8)nat_p X7)(¬ setsum_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))(exactly4 X8(TransSet X5(¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))))(X7 X4))))))(¬ atleast3 X0)))(¬ exactly5 X7))))(((¬ ordinal X7)binop_on (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ) (λX9 : setλX10 : setX5))((((¬ exactly5 X8)exactly2 X7)((¬ (X7 SNoElts_ X7))atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))(((X3 X3)(¬ atleast2 X7))(atleast4 X8((exactly2 X7(¬ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))atleast2 ))))))atleast5 (V_ (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))))(X6 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))((((((atleast3 X5(¬ atleast4 (Unj X6)))(¬ atleast2 X2)(((¬ setsum_p X5)((((¬ atleast6 X5)setsum_p X2)exactly2 X6)exactly4 X5))((exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))(SNo X5atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))((¬ exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(¬ exactly5 X5)))))exactly3 X0)((SNo (((¬ set_of_pairs X6)(((¬ nat_p X5)exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(¬ set_of_pairs X3)))(¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))set_of_pairs X0))((set_of_pairs X5(¬ PNo_upc (λX7 : setλX8 : setpropTransSet X4) X5 (λX7 : set(((atleast4 X0per_i (λX8 : setλX9 : setexactly4 X5))(¬ atleast2 X5))exactly3 X6))))(¬ atleast5 X6)))exactly5 X6))(¬ exactly2 (𝒫 (binrep (𝒫 (𝒫 )) )))))(¬ setsum_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))(X3 X3)))(∀X2X1, (∃X3 : set, ((∃X4 ∈ X2, exactly2 X0)(∀X4 : set, ((¬ ( Sing (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))(¬ exactly2 X3)))))((∃X3 : set, (((∀X4 : set, ((((((atleast5 (((¬ PNoEq_ X3 (λX5 : set(¬ exactly2 )(¬ ordinal X3)) (λX5 : set(((((¬ atleast3 X5)(¬ nat_p X2))((¬ atleast5 X5)((((¬ exactly5 X5)(¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(((((atleast3 X5(((nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )((¬ exactly4 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 ))))))atleast2 (Inj1 X1)))((¬ atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))atleast5 X4))(¬ atleast6 X1)exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))((exactly5 X1(¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))atleast3 X4))ordinal X5)(¬ nat_p X5))SNo X4))exactly3 X2)))(¬ nat_p X4))(((¬ atleast6 X4)(¬ tuple_p X2 ))(¬ partialorder_i (λX6 : setλX7 : set(((atleast3 X7(atleast3 (𝒫 X2)(¬ ordinal X1)))(((exactly3 X4(exactly4 X6(¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))))(atleast6 atleast5 ))(¬ reflexive_i (λX8 : setλX9 : set(¬ ordinal X8)))))exactly3 X6))))(X1 = X0))(¬ atleast4 X2)))(¬ exactly4 X3))(¬ tuple_p X4 X4)))(¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(atleast4 X4(¬ atleast6 (SetAdjoin X3 X4))))TransSet X3)(¬ exactly2 X3))(exactly3 X2(¬ ordinal (binunion (𝒫 (binrep (𝒫 (𝒫 )) )) X4))))(((¬ atleast2 X3)(¬ atleast4 X4))(((ordinal X2(binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )) X4))(¬ (X3 = ))(¬ nat_p X0)((exactly2 X2(¬ (X4 )))atleast6 X2))(¬ exactly4 X4))))(∃X4 : set, exactly2 (Pi (λX5 : setX4))))(((∃X4 : set, ((((atleast3 X4(¬ exactly3 X0))((atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))(tuple_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ) X2(¬ tuple_p X4 X4)))(((atleast6 X2((atleast2 X4(ordinal X4(¬ equip X4 X0)))setsum_p X3))atleast2 X3)(X3 X2)))(¬ setsum_p X4))(¬ SNo X1))(((¬ exactly5 X2)atleast3 X4)((exactly4 X4(¬ TransSet X3))(((PNoEq_ X4 (λX5 : set(exactly2 X3((((¬ atleast6 X5)exactly4 X5)(atleast3 (X4 SNoElts_ (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))))atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))(((exactly4 X4((tuple_p X5 X0exactly2 X5)(¬ exactly5 X4)))(¬ exactly5 X4))((exactly4 X0exactly5 X5)(((((atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(¬ set_of_pairs ))(¬ set_of_pairs X4))(exactly3 X4(¬ atleast2 X2)))exactly5 (𝒫 (binrep (𝒫 (𝒫 )) )))))) (λX5 : setreflexive_i (λX6 : setλX7 : set(¬ atleastp (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ) (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))(((¬ totalorder_i (λX5 : setλX6 : set((¬ atleast3 )(¬ exactly4 ))exactly3 X6))(atleast2 X2atleast4 ))(¬ exactly3 X4))((¬ atleast4 X3)(¬ setsum_p X4)))TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))atleast2 X4)))))(∃X4 : set, ((X4 X2)(¬ set_of_pairs (𝒫 (binrep (𝒫 (𝒫 )) ))))))TransSet X3)))(∀X3 : set, (∀X4X2, linear_i (λX5 : setλX6 : set(¬ TransSet X4)))(∀X4 : set, exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))(∀X3 : set, ∀X4binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) , (¬ trichotomous_or_i (λX5 : setλX6 : setexactly3 ))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMS8NB7tnwudKx67dxN9YKoBeqtFxRAJPZg)
∃X0 : set, ((X0 binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(∀X1 : set, (∃X2 : set, nat_p X2)((∀X2 : set, (∀X3 : set, (¬ atleast5 X1))(∀X3 : set, ∀X4X2, setsum_p X2))((¬ symmetric_i (λX2 : setλX3 : set∀X4binunion X2 X2, atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))((¬ (X0 X1))(∃X2 : set, (atleast6 X0(∃X3 : set, ∃X4 ∈ X2, reflexive_i (λX5 : setλX6 : set(¬ exactly4 X0)(¬ nat_p )((¬ atleast4 X5)(¬ atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))))))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMYXUPQjhRehxqq6sx1MSzgoN8azJABGN62)
∃X0 : set, ∀X1 : set, (∀X2X0, (∀X3 : set, (¬ PNo_downc (λX4 : setλX5 : setprop(((¬ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(SNo X2((((atleast3 X4((¬ X5 X3)(set_of_pairs X4(exactly2 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))((X5 X4(binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) X4))(¬ X5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))))))(¬ X5 X1))X5 X4)atleast5 (mul_nat X0 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))X5 X2)exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))X5 X0))(¬ X5 X0))) X3 (λX4 : set(SNo X2TransSet X1)(((¬ exactly3 )(((TransSet X0PNoLt_ X3 (λX5 : set(¬ atleast6 X4)atleast6 X4) (λX5 : set(¬ ordinal X1))(nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )exactly5 (proj1 (SNoElts_ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))))(exactly3 X3(¬ TransSet (SNoLev X3))))atleast6 X2atleast3 X4))(¬ exactly3 X4))))atleast2 (𝒫 (binrep (𝒫 (𝒫 )) )))(∀X3X2, ∀X4 : set, atleast6 X3))(∃X2 : set, ((X2 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))(∀X3 : set, ((∀X4 : set, (atleast2 X3(set_of_pairs X2(¬ strictpartialorder_i (λX5 : setλX6 : setatleast3 X0atleast3 X5((atleast6 X1((((( = X6)TransSet X6)(¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))((¬ SNoLt X6)(PNo_upc (λX7 : setλX8 : setprop(¬ X8 X7)) X6 (λX7 : set(¬ atleast3 X7))((¬ nat_p )(¬ atleast4 X0)))))(¬ (X2 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))atleast3 X6)))))atleast4 X3)(∃X4 : set, ((((exactly2 X3(exactly5 X2exactly3 X0))(¬ reflexive_i (λX5 : setλX6 : set(¬ atleast3 X0)))((¬ setsum_p X3)((X4 𝒫 (𝒫 (𝒫 (𝒫 ))))(((atleast4 X1(¬ exactly2 X3))(¬ atleast5 X4))exactly3 X3(¬ (X1 X4)))(((((¬ setsum_p X3)(¬ exactly1of2 (¬ ordinal (Sing (𝒫 (binrep (𝒫 (𝒫 )) )))) (exactly3 X4exactly5 X3)))(¬ exactly2 X4)ordinal X4)(¬ exactly3 X2))(((((( )((SNo X4(nat_p X3(¬ TransSet X1))atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))((¬ atleast5 X3)atleast5 X2atleast5 X3)))setsum_p X3nat_p )(atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(¬ SNo X4)(X4 = X0)))equip X1 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))))))((¬ TransSet X1)(atleast4 X0(¬ exactly4 X4))))(¬ exactly4 X4))))(∃X4 ∈ X1, (¬ set_of_pairs X3)(((atleast3 X0((¬ exactly3 X4)(¬ exactly2 X3)))((¬ atleast6 X2)((((¬ atleast6 X0)((¬ exactly3 (Sep X0 (λX5 : set(¬ TransSet X4))))TransSet X3))(((((¬ exactly5 )((atleast3 X3(¬ exactly2 X3))atleast2 ))(¬ atleast4 X4))atleast5 X3)(¬ set_of_pairs X4))atleast2 X2)ordinal X4)))((eqreln_i (λX5 : setλX6 : setSNo X0)((¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 ))) ))SNoLe X2 (𝒫 (𝒫 (𝒫 (𝒫 ))))))((¬ exactly2 (Sing X4))((((((¬ atleast3 X3)(¬ atleast5 X4))tuple_p X1 X3)(𝒫 (𝒫 (𝒫 (𝒫 ))) X3))(ordinal X4(((¬ atleast4 X3)((nat_p X0((¬ SNoLt X1 X3)(¬ exactly4 X4)))(¬ SNoLt X4 )))exactly3 X3)))(atleast5 X3(ordinal (lam2 X3 (λX5 : setX4) (λX5 : setλX6 : setX6))(exactly2 X3ordinal X4)))))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMQKjLjQEDBJcnr1Tf9JtQPQ8qoGB9G2cpM)
∃X0 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )), ∃X1 : set, ((∀X2binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )), (∃X3 : set, atleast3 X3)(∃X3 : set, ((TransSet X1(∀X4 : set, ordinal X2(¬ TransSet X4)))(¬ atleast6 X3))))(¬ exactly2 X0))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMZ1E3eHsSekrjcjn6MPTi2NMBzpRd1bMBN)
∃X0 : set, ((X0 binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(∃X1 : set, ((∀X2 : set, (∀X3X2, ((¬ atleast4 X2)(∃X4 : set, (((((partialorder_i (λX5 : setλX6 : set((¬ setsum_p X5)(¬ atleast2 X4)))((¬ atleast4 X1)(((((¬ nat_p X3)(¬ exactly5 (SNoLev ))((¬ atleast3 X4)atleast2 X3))((¬ atleast5 X3)set_of_pairs X2))((¬ equip X0 X3)(reflexive_i (λX5 : setλX6 : set(¬ ordinal X2)(atleast4 exactly5 X0))(¬ atleast5 X0))atleast6 X4))(((¬ TransSet X4)(exactly3 X3exactly3 X2))atleastp X2 X4))))(exactly4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )((((atleast6 X2atleast6 X2)((exactly5 X2ordinal X0)(((reflexive_i (λX5 : setλX6 : set(((¬ TransSet X6)(((((X6 X6)(¬ atleast4 X5)atleast6 X6)(¬ stricttotalorder_i (λX7 : setλX8 : set(¬ nat_p X5))))(((exactly3 (¬ atleast5 X4))((exactly4 X6((¬ atleast2 (𝒫 (binrep (𝒫 (𝒫 )) )))((¬ atleast5 X1)(¬ atleast2 X5)((((((((((((¬ equip X5 X6)(¬ ordinal ))((((¬ exactly5 X5)((¬ atleast4 )exactly2 X2))(¬ nat_p X5))nat_p X5))(¬ exactly5 X0))(¬ SNoLt X0 X6))(totalorder_i (λX7 : setλX8 : set(¬ atleast2 (𝒫 (binrep (𝒫 (𝒫 )) )))exactly3 X0)(¬ atleast2 X6)))atleast3 X2)(¬ SNo X5))(set_of_pairs X2atleast4 X2))(((((¬ atleast5 X1)atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))(atleast6 X5exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))(¬ atleast6 X5))setsum_p X6)(¬ ordinal X6)))((((((atleast3 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )setsum_p X0)(nat_p (SNoElts_ (Inj0 X6))(¬ exactly3 X6)))exactly4 (SetAdjoin X6))(¬ atleast6 X0))((atleast2 X6((¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))(((((¬ ordinal X6)((¬ exactly2 X6)(¬ ordinal X6)))(¬ nat_p X0))exactly2 (Unj X4))((¬ exactly3 X6)(((¬ (X0 X4))((nat_p X5bij X6 (Unj X6) (λX7 : setX5))(PNoLt X0 (λX7 : set(¬ setsum_p X6)) X0 (λX7 : set(¬ symmetric_i (λX8 : setλX9 : set(atleast2 X9(¬ atleast5 (𝒫 X8))))))nat_p X5)))(¬ atleast3 X5)(((¬ set_of_pairs (ordsucc X5))((((¬ nat_p X5)((¬ nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(¬ nat_p X5)))(exactly3 ((((ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )TransSet X3)(¬ trichotomous_or_i (λX7 : setλX8 : set(¬ equip X7 X7)))(¬ nat_p X0))((¬ exactly4 X5)atleast2 X6))atleast5 X6)))(¬ atleast5 X5)))(¬ exactly3 X0))set_of_pairs X5)))))((¬ ordinal X5)(¬ atleast3 X0))))(((((¬ atleast2 X0)atleast2 X0)((¬ TransSet X5)atleast2 (𝒫 (𝒫 (𝒫 (𝒫 ))))))(((((nat_p X1atleast3 X0)(¬ set_of_pairs X4))(binrep (𝒫 (binrep (𝒫 (𝒫 )) )) X6))(((((((((¬ nat_p X4)(((¬ atleast3 X5)((¬ (X5 X5))TransSet X5exactly4 X3))trichotomous_or_i (λX7 : setλX8 : set(((((¬ (X8 = SNoLev ))((¬ nat_p X8)((¬ exactly3 (famunion X0 (λX9 : setX8)))(X2 = X2))))(¬ exactly4 X8)(reflexive_i (λX9 : setλX10 : set(((¬ setsum_p X2)SNo X5((atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) )exactly3 X2)(atleast4 X10(¬ atleast4 X0)((atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(¬ exactly2 X9)exactly5 X9)(¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))))atleast5 X10))((¬ nat_p X7)(ordinal X8((exactly3 X7(TransSet X7(exactly2 X8TransSet X8))(¬ atleast2 X2)(¬ atleast6 X5))exactly2 X7)(¬ atleast3 X7)))))((¬ atleast6 X7)atleast5 X3))(¬ atleast5 X6)))))((exactly3 X3((((¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))exactly4 X6)(X5 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))(((¬ atleast4 )ordinal (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))((TransSet X5(X3 X6))((¬ atleast6 X6)(¬ atleast4 X5))))))(¬ SNo X1))(¬ ordinal (SetAdjoin X5 X0)))(¬ SNoLe (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))(¬ atleast4 (lam2 X6 (λX7 : setbinrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) (λX7 : setλX8 : setX0))))atleast2 (ap X6 X1))nat_p (setexp X0 X6)))((((¬ reflexive_i (λX7 : setλX8 : setexactly4 X0))linear_i (λX7 : setλX8 : set(¬ set_of_pairs X7)))(¬ atleast2 X2))(¬ tuple_p X2 X5))))exactly4 X6))(atleast4 X6SNoLe X3 X6))nat_p X0)))(reflexive_i (λX7 : setλX8 : setatleast4 X8)TransSet X6)(¬ atleast5 X5))(((setsum_p X1(((¬ set_of_pairs (𝒫 (binrep (𝒫 (𝒫 )) )))((exactly2 X5(((¬ SNo (binrep (𝒫 (𝒫 (𝒫 ))) ))SNo (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))atleast3 X4))(¬ exactly5 X5)))((¬ exactly4 (SNoElts_ ( X5)))TransSet X6)))SNo X6)atleast5 )))ordinal (setexp (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) X6)))(¬ exactly3 X6)))(¬ atleast6 X1))equip X5 X5)((((((((¬ (X4 ))(exactly2 X3(¬ setsum_p X4)))exactly2 (SetAdjoin X1 X2))((¬ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(((¬ exactly2 X3)(¬ exactly5 ))setsum_p )))((¬ (X4 X3))atleast4 X4))TransSet X4(¬ atleast5 X0))((¬ ordinal X0)atleast4 X3))(¬ nat_p X2)))(¬ atleast6 X3))((¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))((¬ exactly4 (V_ X3))exactly4 (Inj0 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ exactly4 X2)atleastp X1 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))ordinal X1)))))(¬ exactly3 X4))atleast6 X4)(exactly4 X4(exactly3 X0(¬ SNo X4)))))(¬ exactly3 X4))(SNoLt X3 X4(ordinal X4(nat_p X4atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(¬ TransSet X2)))))(¬ exactly2 X4)))))((((∀X3X0, (¬ TransSet ))(∀X3 : set, ∀X4X1, ((¬ atleast5 X3)(¬ atleast2 X3))))exactly4 X1)(∃X3 : set, ((∃X4 ∈ X0, (((¬ set_of_pairs X3)(¬ (X2 X3)))((((((¬ atleast6 X4)(¬ nat_p X3))atleast5 X2)(¬ (X3 X3)))(¬ nat_p X2))(nat_p X4((¬ exactly4 X2)((¬ nat_p X3)(¬ atleast3 X4)))))))(∀X4 : set, ordinal X0atleast5 X0((¬ PNoLt X4 (λX5 : set(((¬ TransSet X4)((nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))((¬ ordinal X5)((¬ exactly5 X4)((((((¬ set_of_pairs (𝒫 (𝒫 (𝒫 (𝒫 )))))(atleast4 X5(exactly2 X4atleast4 X4)TransSet X4))(¬ exactly5 X4))(((X5 X5)((((((¬ atleast4 X4)(((((¬ irreflexive_i (λX6 : setλX7 : set(¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))((¬ TransSet X0)(¬ exactly3 )))(¬ exactly3 X5))nat_p X2)(¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))ordinal X4)exactly2 X4)(ordinal X0((atleast4 X4(((¬ set_of_pairs X5)(¬ exactly3 X5))(((ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))(((¬ atleastp X5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ atleast4 X5))(SetAdjoin (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) X5 𝒫 (binrep (𝒫 (𝒫 )) ))))(binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ) X0))(ordinal (𝒫 (binrep (𝒫 (𝒫 )) ))(((¬ exactly5 )exactly2 X5(¬ exactly4 X5)TransSet X0)((¬ nat_p X4)(¬ exactly4 X4)(((atleast2 (((¬ exactly5 (Repl X2 (λX6 : set𝒫 (binrep (𝒫 (𝒫 )) ))))atleast4 X5)((X3 X0)(((¬ SNoLe (SetAdjoin X2 X5) X0)((exactly5 X5TransSet X4)(¬ exactly5 X1))(¬ set_of_pairs X4))(¬ atleast2 X5)))))atleast6 (ordsucc X4))exactly2 exactly4 X2)TransSet X5)))))(X2 ))(ordinal X4(¬ atleast5 X5)))))(¬ (X3 = X2)))((¬ exactly5 X4)((¬ atleast5 X4)(¬ atleast4 X4))))(¬ atleastp X5 (binunion X4 X4)))(¬ exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))))SNoLe X4 X4)exactly5 X5))))TransSet ))(((((¬ TransSet (𝒫 (binrep (𝒫 (𝒫 )) )))((((X5 = X4)(exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) )((¬ atleast6 X5)atleast4 X1)))(¬ atleast5 X5)(((¬ atleast5 X0)(((¬ exactly5 X2)((((¬ atleast6 X4)(¬ atleast5 X3))reflexive_i (λX6 : setλX7 : set(¬ exactly4 X7)))((exactly4 X4(¬ nat_p ))atleast6 X0)))(¬ TransSet X4)))(((¬ atleast5 X5)((¬ nat_p X1)((¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(¬ exactly2 X3)(¬ atleast3 X0))))(¬ atleast6 X5))))(¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))atleast2 X4)(((¬ TransSet X5)tuple_p X0 X5)atleast2 X4((exactly3 X3((¬ SNo X4)((¬ SNo X4)((exactly5 X5(¬ atleast4 X5))exactly3 X4))(¬ exactly2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))))(atleast6 X3((¬ exactly5 X2)exactly3 X5))))atleast2 )(¬ SNo_ (ordsucc (mul_nat X2 (Sing (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))))))) X0 (λX5 : set(exactly2 (X0 X4))))(nat_p X4(equip X2 X3(¬ atleast5 X3)))))))))((exactly5 X1(∀X2X1, ∃X3 : set, ((X3 X2)(∃X4 : set, ((X4 binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )setsum_p X4)))))PNo_downc (λX2 : setλX3 : setprop((∀X4 : set, (¬ X3 X1)((set_of_pairs X0(nat_p X2(((((¬ X3 X1)(((¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))(¬ nat_p X1))(X3 X2(X3 X4X3 X2))))(¬ atleast4 X4))(¬ nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))((X3 X2X3 X2)(¬ X3 X4)))))nat_p X4)equip X4 X2)(∃X4 : set, (((¬ atleast5 X4)X3 (𝒫 (binrep (𝒫 (𝒫 )) )))((atleast4 (famunion (λX5 : setX5))ordinal X0)X3 X4))))) X1 (λX2 : set∀X3 : set, ∃X4 : set, ((X4 X2)((¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))((¬ atleast6 X4)(¬ SNoLt X4 X4)))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMYvuse7tUteMqLXKZMZqjkSy7icQAagprH)
∃X0 ∈ , ∃X1 ∈ X0, ∀X2 : set, ((¬ trichotomous_or_i (λX3 : setλX4 : setatleast2 X3(atleast6 X2(¬ TransSet X3))))(∀X3 : set, (∃X4 : set, ((X4 X3)(¬ reflexive_i (λX5 : setλX6 : setatleast6 X5))))(∃X4 ∈ binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )), (¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))))((∃X3 : set, ((X3 X1)(∃X4 : set, ((X4 X2)((((((¬ exactly5 X0)atleast4 X4)atleast5 X4)(atleast5 (𝒫 (binrep (𝒫 (𝒫 )) ))atleast3 X3))atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))(¬ TransSet X4))))))(∃X3 : set, ∃X4 ∈ X2, ((((¬ exactly2 X2)(¬ exactly3 X3))(¬ atleast5 X4))(¬ nat_p X3))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMbeV54bcBrJc5uDRHtA9bqLov7V8gtNEd9)
∀X0 : set, (∃X1 : set, ((X1 binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )((∃X2 : set, ((X2 X1)((¬ nat_p X2)((∃X3 ∈ binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) , (¬ exactly4 X1))(∃X3 ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) , ∀X4 : set, (ordinal X1(((¬ atleast2 X2)(¬ exactly5 ))atleast5 X3)))))))equip X1 (Inj1 X1))))(∃X1 : set, ((X1 X0)(¬ atleast3 X0)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMT74giqjpC98xFzk1zFtRJmb31Q2UXh7uF)
∀X0 : set, (∃X1 : set, ∀X2 : set, ((∀X3X2, ordinal )(∀X3X0, ∀X4X3, (¬ exactly4 X3)))((¬ exactly2 X0)(¬ TransSet X1)))(∃X1 ∈ , ∃X2 : set, (irreflexive_i (λX3 : setλX4 : setSNo X0((set_of_pairs X0exactly4 X3)(¬ (X1 X2)))(¬ exactly3 X2))TransSet ( X1)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMHNzWVF5n5wsEdKdas4R2SJKurNsLkSeSe)
∃X0 ∈ binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) , ∃X1 : set, (∃X2 : set, ((X2 X0)(∀X3X1, ∃X4 : set, ((((((¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(¬ atleast3 X1))exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(atleast3 atleast3 X4))(exactly2 X3(¬ atleast6 X2)atleast6 X3))((((exactly5 X3(¬ nat_p X3))(¬ exactly2 X3))exactly5 X4)ordinal X2)))))(∀X2SNoElts_ X0, ∃X3 : set, ((∀X4X2, atleast5 X3)(∀X4 : set, atleast3 X1(¬ equip X3 X4))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMKjKkoa9HDUoLuuoDizx3bjBG2GraUcqwd)
∀X0SetAdjoin (binunion (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ) (V_ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))) (setprod ( (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )) (binintersect ( (ordsucc (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))) (𝒫 (𝒫 (𝒫 (𝒫 )))))), ∃X1 : set, ((∀X2 : set, (∃X3 : set, (((¬ nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))exactly5 X3)(∃X4 : set, ((X4 Sing X1)(nat_p X3set_of_pairs X3))))exactly4 X2)(¬ atleast6 X2))(∀X2binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )), ∀X3X2, ∃X4 : set, (¬ SNoLe X3 X4)((atleast4 X4exactly3 X0((¬ binop_on X1 (λX5 : setλX6 : set𝒫 (𝒫 (𝒫 (𝒫 )))))(¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))atleast2 (ordsucc X1)((atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))TransSet X2)atleast6 X0)(¬ atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))exactly5 X1))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMchgB1ep1m9RSeTmZnW7L3j1Grc6CytVTB)
∃X0 : set, ∃X1 : set, ((∃X2 : set, ((∃X3 : set, ((∃X4 : set, ((X4 𝒫 (binrep (𝒫 (𝒫 )) ))((((((¬ SNo X3)atleast4 X4)((((X3 = X2)((exactly3 X3((((atleast5 (In_rec_i (λX5 : setλX6 : setsetX0) X3)(( binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )exactly5 X4))(¬ atleast4 ))atleast4 X0)atleast4 X4))(¬ atleast2 )))((atleast4 X3nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(¬ TransSet X3)))((¬ atleast6 )((exactly3 X0atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) ))((¬ atleast2 X4)(¬ nat_p X3)(set_of_pairs X3(SNo X4(¬ atleast4 X3))(X3 ))(¬ nat_p X0))((¬ SNo (Unj (𝒫 (binrep (𝒫 (𝒫 )) ))))atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))atleast6 X4(((((¬ exactly4 X3)(exactly5 X4((atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(¬ exactly4 X3))(((¬ atleast6 X4)((atleast2 X4(¬ exactly4 X4))(((¬ atleast5 X4)((¬ exactly2 )ordinal X3)tuple_p X0 X0)(¬ exactly5 X0))))((¬ setsum_p X3)atleast6 X3)))))((atleast5 X3((((((X0 X0)((atleast2 X1((ordinal X4(¬ reflexive_i (λX5 : setλX6 : setatleast4 X6)))((¬ nat_p X3)(¬ setsum_p X1))))(((((¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(setsum_p X3((¬ TransSet X4)(¬ atleast6 X4))atleast4 X3))(X3 X2))atleast6 )(¬ atleast3 X4)atleast5 (𝒫 (𝒫 (𝒫 (𝒫 ))))(¬ exactly3 X4)))(¬ (X4 = X0)))(¬ TransSet X4))((¬ atleast4 X4)(X3 X3)))(¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))(((((atleast4 X4TransSet X0)(((PNoEq_ X3 (λX5 : set((¬ exactly4 X0)(¬ exactly4 X4))TransSet X5) (λX5 : setatleast3 )ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ exactly3 X1)atleast5 X3)((¬ exactly1of2 ((¬ exactly4 X3)(TransSet (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))atleast5 X4)) (exactly5 X4))exactly5 (proj0 X4)))atleast4 X4)atleast2 X4)(transitive_i (λX5 : setλX6 : set(¬ atleast2 X6))atleast5 X0))(¬ setsum_p ))))((¬ atleastp X3 X4)(¬ equip X0 X2))))(¬ TransSet X3)((¬ atleast2 X3)((¬ atleast2 X4)(¬ nat_p X0)(¬ exactly5 (𝒫 (𝒫 (𝒫 (𝒫 ))))))))atleast3 X3)exactly4 ))))(¬ atleast5 X1))atleast4 )(¬ reflexive_i (λX5 : setλX6 : set(X0 X6))))))(∀X4𝒫 (𝒫 (𝒫 (𝒫 ))), (¬ atleast5 ))))(∀X3 : set, (¬ (X3 Inj1 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))(∃X4 : set, (atleast3 X3((¬ atleast6 X1)atleast5 X3))))))(((∃X2 : set, ((∃X3 : set, ((∃X4 : set, ((¬ exactly4 X4)((((¬ exactly3 X3)set_of_pairs X3)atleast4 X4)atleast6 X3)))(∃X4 ∈ X2, atleast5 X4)))(irreflexive_i (λX3 : setλX4 : set((¬ SNo X4)(¬ nat_p X4)))(∀X3 : set, ∃X4 : set, ((¬ atleast2 X3)(¬ exactly4 X2))))))(∀X2 : set, atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(¬ exactly2 X0)))(((∀X2X1, ∃X3 : set, (¬ reflexive_i (λX4 : setλX5 : set(¬ TransSet X5))))(∃X2 : set, ((X2 )(∃X3 : set, (SNo X3(∃X4 : set, (¬ exactly2 X4)))))))(∀X2X0, (¬ symmetric_i (λX3 : setλX4 : set(¬ atleast4 X4)))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMTHxaWtz7koD99x82ikBj39S6kJb8UAoUH)
∀X0binunion (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ) , ∀X1 : set, ((¬ nat_p X0)(∃X2 : set, ((X2 X1)(((∃X3 ∈ X0, set_of_pairs X1)(atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))exactly4 X1))(∀X3 : set, ∃X4 : set, atleast5 X3)))))(∀X2 : set, exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(∀X2 : set, ((¬ nat_p X0)(∀X3 : set, (∀X4 : set, exactly4 X0)(¬ (X2 X1))))(∃X3 ∈ X0, ((∃X4 : set, (((¬ atleast2 X3)(( X4)atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))equip X4 X2))(∀X4 : set, ((¬ atleast4 X4)(¬ exactly2 X3))((¬ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ atleast6 X0))(¬ exactly4 X3)))(∃X4 ∈ X0, (((((¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))atleast4 X0)(((¬ SNo_ X1 )((¬ atleast2 X4)(¬ exactly5 X0)))(((¬ atleastp X4 X3)(((exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))(¬ atleast6 X4))((¬ atleast4 X4)(SNo X4(¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))))atleast5 X2)setsum_p X2))(SNo X4(atleast4 X1(((¬ exactly4 X2)((¬ (binunion X2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ) X2))(¬ TransSet X3))atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))( = X3)(¬ reflexive_i (λX5 : setλX6 : set(¬ atleast4 X0)))))(¬ SNoLt X3 X4)))))exactly4 X0)(exactly5 X0(¬ atleast6 X3))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMNZs8juWa2T7vXDEWp5B8wgURaGHDVshQm)
∀X0 : set, (∀X1 : set, (¬ (X0 X1))((∃X2 : set, ((∃X3 : set, ((¬ atleast5 X3)(∃X4 ∈ X2, (¬ (X4 = binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))))TransSet X1))(∃X2 : set, ((X2 X1)(∀X3X1, ∃X4 ∈ X1, (¬ exactly4 X3))))))(∃X1 : set, ((∀X2 : set, atleastp (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ) X0(∀X3X2, ∀X4X3, (atleast4 X4((((PNo_downc (λX5 : setλX6 : setprop(((setsum_p (ordsucc X4)atleast5 X3)exactly4 X4)trichotomous_or_i (λX7 : setλX8 : set(¬ X6 )))TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))) X0 (λX5 : setequip X5 X1)(¬ nat_p (Unj X0)))((X1 = binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))exactly3 ))(((¬ (X4 binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))ordinal X2)(exactly5 X4((exactly5 atleast6 X4)(¬ ordinal (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))))))(¬ SNoLt (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ) X3)))))((¬ SNo (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))atleast4 X0)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMKMRtwCbwL8iXayoUziW2wttmLntbeQGB)
∀X0 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ), ∀X1 : set, ∀X2 : set, ∃X3 : set, ((∀X4X0, (¬ atleast6 X4)(((((¬ tuple_p X0 )((exactly4 X3exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))SNo X3))nat_p X0)(atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))(((¬ exactly3 X3)atleast6 X4)TransSet X1)atleast2 X3exactly3 ))((¬ exactly4 X2)(¬ exactly4 X3))(((((¬ atleast2 X2)(exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))(((TransSet X4(X0 X3))((¬ atleast6 X3)(((nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(((((((¬ exactly2 (binintersect X0 X1))(¬ exactly5 ))exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))exactly5 X3)(((exactly2 X0((((((((¬ exactly2 X4)(¬ (X4 X2)))(¬ (X3 X3)))(¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 ))) )))(¬ atleast2 X0))(¬ setsum_p X3))(atleast5 X4((((¬ equip X3 X3)(¬ exactly3 )(exactly3 X2((¬ set_of_pairs X3)(¬ exactly5 (𝒫 (binrep (𝒫 (𝒫 )) ))))))(¬ ordinal X4))(((((((¬ (X3 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))nat_p X3)((¬ exactly2 X3)(nat_p X3(¬ exactly4 )((¬ SNoEq_ X3 X2 (𝒫 (binrep (𝒫 (𝒫 )) )))((¬ atleast4 X4)atleast5 X3)))))(¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))(¬ atleast4 X3))(X2 X3))nat_p ))))(¬ exactly4 X4)))(¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 ))) )))((atleastp X4 X3(¬ TransSet X3)((¬ exactly4 (UPair X4 ))((((SNo (¬ atleast5 X4))(¬ exactly5 X4))nat_p X3)SNo X3))(¬ exactly3 X2))(¬ atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))))((((¬ ordinal X0)ordinal X4)((((((¬ exactly5 X0)atleast5 X4((((exactly2 X2((set_of_pairs X3((¬ atleast4 X3)(¬ exactly3 X3)))TransSet (binunion X2 X0)))(¬ exactly3 X3))(atleast6 X3(¬ reflexive_i (λX5 : setλX6 : setexactly3 X5)))SNoLe X3 X3)atleast6 (Inj1 (𝒫 X4))))((((TransSet X4exactly5 )reflexive_i (λX5 : setλX6 : setset_of_pairs X6))exactly4 X0)exactly3 X2))(atleast6 X0(¬ atleast6 X4)))((exactly4 X2atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))exactly5 X2))atleast5 X4))(¬ atleast6 X4)))(¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))(¬ exactly4 X1))(binop_on X4 (λX5 : setλX6 : setX0)exactly5 X2))))(((nat_p X3(exactly2 (((((¬ exactly3 X4)((¬ nat_p X3)(¬ ordinal X3)))SNo X1)SNo (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))((¬ atleast5 X0)((¬ atleast3 X4)(atleast4 X3(((((¬ ordinal X4)(exactly5 X4((¬ equip (Unj X1) )((¬ (X3 ))equip X4 X4(((ordinal X4exactly5 X0)(set_of_pairs X1(((((¬ TransSet X3)((¬ exactly5 X4)(((atleast6 (Inj1 X3)ordinal X4)(¬ atleast6 X4))((¬ ordinal X4)(((¬ atleast6 X2)(¬ atleast3 ))((exactly5 X4(¬ exactly3 X2))(atleast6 X3((exactly2 X3atleast2 (¬ SNo X4))(¬ TransSet X4)))(((¬ equip X4 X3)SNo_ X3)atleast4 X2))))atleast2 X4(((exactly3 X0exactly5 X3)((¬ nat_p X4)atleast4 X4))(¬ atleast6 X2)))))(X3 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(((ordinal X4((¬ atleast5 )(¬ atleast6 X3))(¬ ordinal X4))(¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))exactly3 X2))antisymmetric_i (λX5 : setλX6 : set(¬ setsum_p X1)))))((¬ set_of_pairs X2)((¬ ordinal X2)(exactly5 X1((reflexive_i (λX5 : setλX6 : set(nat_p X2(¬ exactly3 X6))(((¬ exactly4 X0)((atleast6 X5(¬ TransSet X6))( = X6)))((((((¬ per_i (λX7 : setλX8 : setatleast5 X1))(¬ atleast2 X5))(¬ exactly4 ))((TransSet (SNoElts_ X5)(X1 X6))(((((¬ partialorder_i (λX7 : setλX8 : set((((ordinal X0(¬ SNo ))atleast6 X7((¬ set_of_pairs X2)(SNo X2((ordinal (binrep (𝒫 (𝒫 (𝒫 ))) )(¬ atleast6 X0))(¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(((((¬ atleast5 X8)(¬ (X7 X7)))exactly5 ( X4))((¬ atleast2 X7)(¬ TransSet X6)))(((¬ exactly1of3 (atleast3 X8) (exactly2 (proj1 X8)) (X2 X7))((((¬ SNo_ X4 X8)per_i (λX9 : setλX10 : set(atleast2 X6(¬ TransSet X10))))(¬ SNoLt X5 X7))(¬ exactly3 X4)))(exactly5 X8(((X7 X7)(set_of_pairs X8(((¬ atleast2 (proj0 X4))atleast4 X7)((¬ atleast6 X8)atleast3 X7))))(¬ nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(¬ set_of_pairs (Sep X8 (λX9 : set((¬ equip X9)(¬ atleast5 X6)))))))))))(¬ ordinal X8)((atleast2 X2(antisymmetric_i (λX9 : setλX10 : set(¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ exactly3 ))(¬ atleast6 X6))atleast2 X8((nat_p X8atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))exactly2 X7))atleast5 X7))(¬ atleast4 X8))atleast6 X1)(((¬ (X8 X1))(¬ atleast3 (ap X7 X4)))(nat_p X1(¬ atleast3 (V_ X1))(¬ exactly2 X4)))))atleast3 )(((¬ atleast5 X0)(((¬ (X5 X2))(¬ setsum_p X0))atleast3 X6))ordinal X6)((SNoElts_ (nat_primrec X6 (λX7 : setλX8 : setX8) ) = X1)exactly3 X6)exactly2 X5)(¬ atleast3 (Inj0 X6)))(ordinal X4(¬ atleast4 X5)))))ordinal X6)((¬ atleast4 X6)(¬ exactly3 X6)))))(exactly5 X2(set_of_pairs X4(binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) X3)(((bij X3 X4 (λX5 : setX0)((¬ atleast3 X3)((¬ SNo )SNo X2)))atleast5 X2)(atleast6 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )(((¬ atleast2 X3)(¬ exactly2 X3))(X1 X2)))))exactly5 X0))(((¬ atleast5 X4)((¬ atleast6 X2)nat_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))setsum_p X3))))))(((¬ atleast3 X2)(¬ TransSet X4))(((¬ exactly3 (V_ ( (ordsucc X4))))(((((((TransSet X0TransSet (Sing X2))(¬ atleast4 X2)((((¬ atleast3 X1)atleast3 )reflexive_i (λX5 : setλX6 : set((¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))antisymmetric_i (λX7 : setλX8 : set((¬ TransSet X7)nat_p X8)((¬ atleast6 X7)atleast6 X4)(ordinal X8nat_p X2))))))atleast4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))(atleast3 X2(¬ exactly3 X3))exactly5 X3)(¬ nat_p X3))setsum_p (Sing X4))nat_p )ordinal X4))((SNoLt X4 X4exactly5 )(¬ exactly4 ))))(((¬ atleast6 X4)(exactly3 X3(atleast5 X4(reflexive_i (λX5 : setλX6 : set((((¬ nat_p X5)((¬ ordinal X6)((¬ exactly2 X6)setsum_p X5))exactly3 X5)((exactly4 X6exactly5 X6)(X3 )))atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))(¬ exactly4 X5))(¬ atleast6 X0)))))((((((SNo X3((((¬ atleast6 (V_ X4))exactly3 )totalorder_i (λX5 : setλX6 : set((¬ nat_p X0)(¬ reflexive_i (λX7 : setλX8 : setset_of_pairs X8)))))((atleast3 (Repl X3 (λX5 : setbinrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))exactly5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))atleast5 X3(¬ exactly3 X4)(((exactly3 X4atleast6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(¬ atleast5 X1))((¬ (X3 = X3))(¬ atleast6 X3))))))SNo (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))tuple_p X3 X2)(¬ tuple_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ) X0))(¬ exactly2 X2))(((¬ exactly3 X2)((((X4 X4)((((¬ exactly2 X0)(¬ nat_p X2))(((((¬ exactly5 X0)(set_of_pairs X3(atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(((¬ atleast4 X4)ordinal X0)(¬ atleast6 X4))))exactly1of3 (nat_p X4((((X4 X3)exactly5 X3)setsum_p X4)(((((¬ TransSet X4)((¬ SNo_ X4 X0)(exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) )atleast2 X4(((atleast3 X4(¬ atleast4 X4))(¬ atleast5 X2))(((¬ atleast5 X4)(atleast3 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )((reflexive_i (λX5 : setλX6 : setequip X6 X5)(¬ ordinal X2))atleast5 X0)))atleast3 )))))(¬ ordinal X0))((exactly2 X3(((¬ (X3 X3))((¬ transitive_i (λX5 : setλX6 : set(¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))nat_p X4))exactly2 X3))((¬ (X4 X3))((((((((¬ exactly5 X4)(¬ atleast2 X3)(¬ TransSet X2))(¬ exactly3 X3))((((((SNoEq_ X3 X2 ((¬ exactly2 )(set_of_pairs X0atleast2 (𝒫 (𝒫 (𝒫 (𝒫 )))))))((¬ atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))set_of_pairs X3)))(((((¬ (X2 ))((¬ atleast5 X2)(¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))(((¬ exactly3 X4)exactly4 X3)(SNo (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))setsum_p X4)))(¬ TransSet (Inj1 X3)))(atleast5 X2(SNoLe X1 X3(¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))))))(¬ binop_on X2 (λX5 : setλX6 : setX5)))((¬ exactly2 X0)(atleast6 X1(((((¬ exactly5 X3)(¬ atleast2 X3))atleast4 )(atleast2 X4((¬ exactly4 X4)atleast3 X0)))set_of_pairs X1atleast4 X2))))TransSet X4((((((¬ exactly5 X1)(¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) )))((¬ nat_p X3)(¬ set_of_pairs X2)))((¬ exactly5 X2)(exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))(¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))))exactly5 X0)((¬ atleast2 )atleast3 (lam2 X4 (λX5 : set𝒫 (𝒫 (𝒫 (𝒫 )))) (λX5 : setλX6 : setX0))))))reflexive_i (λX5 : setλX6 : set(((¬ SNoLt (setminus X6 X5))(¬ ordinal X3))exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(((X0 X6)(((¬ ordinal X6)((((¬ exactly5 )TransSet (V_ X5))((¬ atleast6 X2)ordinal X5))(¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))(¬ exactly4 X3)))((X4 X0)(((¬ setsum_p X0)partialorder_i (λX7 : setλX8 : set((((PNo_downc (λX9 : setλX10 : setprop((¬ atleast3 )exactly3 X8)) X2 (λX9 : setexactly5 X9)(exactly3 X8(((¬ setsum_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))((¬ atleast3 X7)atleast2 X8atleast6 X8))atleast2 X5(¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))))(¬ atleast3 X5))(((((¬ exactly2 X7)(¬ set_of_pairs X3))(¬ atleast3 X8))(exactly2 X8((((exactly2 X8exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(¬ setsum_p ))(((¬ exactly4 X2)(¬ exactly4 X8))exactly5 X7))(((¬ exactly2 X8)atleast5 X7)(¬ set_of_pairs X8)))))(X7 X4)))(exactly2 X7(¬ atleast4 X8))))(reflexive_i (λX7 : setλX8 : set(((¬ exactly3 X5)(atleast2 X8((bij X7 X7 (λX9 : setX9)TransSet X7)(¬ atleast3 X8))))(((((¬ atleast6 X1)((equip X8 X7(((¬ atleast4 X0)(((¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) ))atleast5 X7)(((¬ TransSet )SNo X7)((¬ atleast4 X8)(¬ nat_p X7)))))(atleast6 X3(nat_p X5(¬ set_of_pairs X4))))(¬ atleast6 X7))(¬ set_of_pairs X7)))atleast5 X8)((atleast5 X5((¬ nat_p X7)(¬ SNo_ X7 X8)))(¬ reflexive_i (λX9 : setλX10 : set((¬ exactly3 X1)(exactly4 X9tuple_p X10 X8))))))(((¬ atleast4 )((¬ set_of_pairs (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))ordinal X1))SNoLe X7 X8)))(TransSet X5((X7 𝒫 (binrep (𝒫 (𝒫 )) ))exactly5 X5)))((¬ set_of_pairs X6)((atleast5 X5transitive_i (λX7 : setλX8 : setexactly2 X7))(¬ (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) = binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))))atleast3 X6set_of_pairs X5)))))(¬ set_of_pairs X4))((¬ exactly2 X3)PNo_upc (λX5 : setλX6 : setprop((¬ atleast4 (𝒫 (𝒫 (𝒫 (𝒫 )))))(((¬ X6 (Inj0 X4))((((exactly2 X4atleast2 (Inj1 X4))(¬ atleast4 X4))(¬ X6 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))X6 X5))X6 X5))) X3 (λX5 : setexactly5 X4))(¬ exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))(((¬ atleast6 X1)per_i (λX5 : setλX6 : set(¬ set_of_pairs X0)))exactly2 )))))setsum_p X0SNo (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))) ((atleast4 (binintersect (Inj0 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))) (binunion X0 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))((¬ (X2 X1))((¬ atleast5 X3)(¬ TransSet ))(¬ exactly5 X3)))((exactly4 X2exactly2 X0)set_of_pairs X4)) ((((¬ atleast2 X3)((¬ SNo X2)((¬ reflexive_i (λX5 : setλX6 : set(((¬ atleast4 X5)atleast3 X5)(¬ exactly5 X6))))(¬ ordinal X3))))exactly3 X2)(¬ ordinal (𝒫 (binrep (𝒫 (𝒫 )) )))))ordinal X4)TransSet X2)(¬ SNo X4)))(X2 X3)))atleast5 X3((¬ ordinal X3)(atleast4 X2(¬ set_of_pairs (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))))(((¬ exactly4 X0)((setsum_p X4((¬ exactly5 X3)(((atleastp X3(¬ atleast2 X0))(exactly4 X3(¬ exactly4 X4))TransSet X3(exactly5 X3(¬ exactly4 (proj1 X3)))SNoLe X3 )((¬ exactly5 X1)(((((((¬ PNo_downc (λX5 : setλX6 : setpropreflexive_i (λX7 : setλX8 : set((((X6 X6 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))((((¬ exactly2 X1)(¬ atleast4 (𝒫 (binrep (𝒫 (𝒫 )) )))(X6 X7X6 X1)X6 X0)(nat_p X4((¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))((X6 X8(((X6 X7(¬ exactly2 X0))(SNoLt X4 X8(¬ exactly2 X0)))(¬ TransSet X8)))((((¬ X6 )atleast6 X7)X6 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(X6 (¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))))))))((¬ X6 X8)X6 X0)(¬ X6 X7)))(¬ (X0 X8)))X6 X5))) X3 (λX5 : set(((¬ PNoEq_ X5 (λX6 : set(¬ exactly2 X5)) (λX6 : set((((exactly4 X3(¬ atleast6 X5)(¬ atleast4 X5))(¬ exactly4 X5))(¬ exactly4 X5))(¬ set_of_pairs (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))))((atleast3 X0atleast3 X5)((¬ nat_p X5)((binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ) X2)exactly5 X5))))(¬ atleast2 X4))(¬ exactly3 X4)))((TransSet X4(exactly5 (setsum X4 X4)(TransSet (Inj0 X3)(¬ TransSet X3))((¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(atleast5 X4SNo_ X3 X4)))exactly5 X2)(¬ SNo_ X4 X3)))(((((SNo X4(((¬ atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))exactly5 X4)((atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(atleast3 X2exactly3 X3))(¬ exactly4 X3))))atleast6 X4)(¬ PNoLe (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (λX5 : setordinal (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))) X3 (λX5 : set(¬ atleast4 (lam X1 (λX6 : setX6))))))((¬ exactly5 X2)(X3 X3))((((¬ nat_p )(((((¬ (X4 = X3))(atleast6 X3(((atleast3 X4(¬ atleast2 X3))nat_p X2)(¬ exactly4 X1))))(¬ exactly2 X4))(¬ atleast6 X4))(¬ exactly3 X3)))(¬ exactly4 X4))((¬ nat_p (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(nat_p (binrep (𝒫 (𝒫 (𝒫 ))) )(¬ nat_p X2)))))exactly4 ( X4)))(¬ ordinal X3))(¬ (X4 X1)))exactly1of2 ((atleast2 X3(atleast5 X0TransSet X4(¬ TransSet X3)))((((¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(atleast6 X1atleast4 X3))(((¬ atleast3 X3)(((¬ atleast2 X2)atleast5 X0)TransSet (setminus (setprod X4 X4) X3))exactly4 X4)atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))(set_of_pairs X4((¬ TransSet X3)(((¬ exactly5 X3)exactly5 X2)(¬ TransSet X4)))))) (X1 ap (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ) (binunion X3 X3)))(¬ nat_p ))))))atleast4 X4))(¬ atleast2 X4))))((¬ TransSet X3)(((set_of_pairs X2((((¬ exactly5 (proj1 X4))(¬ atleast5 X2))(( X3)(¬ tuple_p (𝒫 (𝒫 (𝒫 (𝒫 )))) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))))atleastp X4 X2))(¬ set_of_pairs (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))tuple_p X2 X3)))))))))((((¬ nat_p X0)(¬ SNoLe X4)nat_p X1)exactly4 X3)(¬ PNoLt X1 (λX5 : set(¬ exactly4 X0)) X4 (λX5 : set(((¬ exactly2 )(((atleastp ( X4) X5atleast4 X1)((TransSet (𝒫 (𝒫 (𝒫 (𝒫 ))))atleast6 X0)(((¬ TransSet X1)((X0 = binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )(¬ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))))atleast6 X5))((atleast4 X1((¬ atleast3 X1)(¬ atleast5 X4))(¬ atleast5 X2)(exactly4 X4((¬ atleast2 X4)(¬ exactly3 X4))))(exactly4 X5((¬ ( X4))(¬ atleast5 X2)))))(((((atleast6 X3SNo X5)(¬ SNo X2))TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))((¬ TransSet X5)(¬ atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))))(¬ exactly5 X0)))atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))((¬ atleast6 X2)(TransSet X0(atleast6 X0exactly5 X0))atleast3 X5))))))(¬ atleast6 X1))((atleast5 X3((¬ nat_p )reflexive_i (λX5 : setλX6 : set(¬ exactly2 X6))))(((¬ atleast3 X2)(((((exactly2 (Inj1 X3)(¬ atleast2 )SNoLe X4 X1)(¬ atleast5 X2)ordinal X3)((ordinal X1((¬ atleast6 X3)(¬ set_of_pairs (Inj1 (proj0 )))))atleast2 X2))(¬ exactly2 X4))(¬ nat_p X4)(¬ SNoLe X4 X3))((¬ exactly2 (SNoElts_ X3))(¬ TransSet (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))))exactly2 )))))((¬ atleast2 X2)SNo X1)))))((exactly2 (Inj1 X3)exactly3 (𝒫 (binrep (𝒫 (𝒫 )) )))atleast6 X4))(¬ atleast5 )atleast6 X3)))(¬ equip X4 X2))exactly2 X3)exactly2 X2)(X4 X1))(∀X4X3, atleast3 X1((¬ exactly5 X0)((¬ ordinal X4)ordinal X4)(exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )((¬ (X3 X4))(atleast5 X2((((¬ exactly5 (setprod (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ) (Sing )))atleast4 (binrep (𝒫 (𝒫 (𝒫 ))) ))totalorder_i (λX5 : setλX6 : set(exactly5 (¬ exactly2 X6))))(¬ exactly3 )))))setsum_p X4)atleast2 (PSNo X4 (λX5 : set((¬ (X5 X4))(ordinal X0exactly4 X4((¬ (X5 X4))((¬ atleast6 X5)(((setsum_p X1(¬ (X5 = X2)))((¬ reflexive_i (λX6 : setλX7 : set(nat_p X6((exactly2 X7((¬ ordinal X7)(¬ (X6 X4))))(TransSet X7((¬ reflexive_i (λX8 : setλX9 : setsetsum_p X8))((¬ exactly4 X6)((set_of_pairs X7(((¬ ( X1))(nat_p X4(¬ ordinal X7)))((((¬ equip X6)((¬ exactly4 X7)(¬ atleast6 X6)))((¬ exactly2 X7)(¬ SNoLt X6 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))))(¬ exactly3 X7))))((¬ atleast3 X0)(¬ exactly3 X5))))))))(((((((((¬ atleast6 X6)(atleast3 X5((((¬ atleast5 X6)((¬ per_i (λX8 : setλX9 : set(¬ atleast2 X9)))TransSet X6))(ordinal (binunion X7 )(¬ atleast4 (SetAdjoin X6 X7))))((¬ exactly5 X6)(¬ SNo X7))))exactly4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))atleast5 X0)(Sing X1 X7))(((¬ atleast3 X7)(atleast2 X7(((¬ nat_p X6)((¬ exactly5 X6)(¬ atleast6 X5)))((((¬ reflexive_i (λX8 : setλX9 : set((((¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))(atleast5 X5((¬ atleast6 X8)ordinal X8)))(exactly4 X9exactly2 X8))(((¬ (X8 X5))((((¬ PNo_upc (λX10 : setλX11 : setprop((X11 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )((X11 X4X11 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(¬ setsum_p X4)X11 (𝒫 (binrep (𝒫 (𝒫 )) )))atleast3 X9))atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))) X8 (λX10 : set((((¬ exactly4 X10)exactly2 X10(atleast5 X10(¬ atleastp X10 (proj0 ))))(¬ atleast3 X8)SNo X0(¬ SNo X3))(((exactly2 X9(ordinal X10(¬ atleast5 X0)))((X9 X3)(¬ atleastp X10 X2))(exactly4 X1(atleast3 X9(¬ tuple_p X9))))atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))))(¬ (𝒫 (binrep (𝒫 (𝒫 )) ) binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ set_of_pairs X2)))(¬ nat_p X8)))))atleast2 X6)(atleast6 X7(¬ atleast3 ))(¬ ordinal X6))nat_p X0))))((atleast6 X7(atleast5 X6(((TransSet X3((¬ exactly4 X7)((((¬ exactly2 X6)(¬ exactly4 X7))set_of_pairs X7)(¬ setsum_p X7))))atleast5 X1)(¬ atleast5 X2))))((exactly3 X1(¬ exactly3 X7))(equip X6 X1(((¬ set_of_pairs X6)(¬ atleast3 X5))exactly5 X6)))))tuple_p X7 X7)(setsum_p atleast4 X7)(atleast6 X1(set_of_pairs ((¬ set_of_pairs X1)exactly3 X3nat_p X6))))(¬ atleast3 X1))(((¬ set_of_pairs X6)(¬ nat_p X7))(¬ atleast4 X6))((¬ atleast6 X0)nat_p X7))tuple_p X0 X0)(nat_p (binrep (𝒫 (𝒫 (𝒫 ))) )((¬ set_of_pairs X5)atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))))(¬ ordinal )))(exactly3 (Inj1 X4)((¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))(¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))(¬ setsum_p X0)))))(¬ partialorder_i (λX6 : setλX7 : setordinal X2))((((¬ nat_p X4)((ordinal X1(¬ atleast4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))(((X2 X0)setsum_p X5(((¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ atleast2 X5))(¬ atleast5 X5)))SNo X3)))ordinal X4)(atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))(exactly4 X5eqreln_i (λX6 : setλX7 : set(¬ stricttotalorder_i (λX8 : setλX9 : setatleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))(((((¬ nat_p X6)(((((¬ TransSet )(¬ atleast2 X1))((exactly4 (binrep (𝒫 (𝒫 (𝒫 ))) )(¬ SNo (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))set_of_pairs X7))(¬ ordinal X7))(¬ TransSet )))(¬ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )) X5)))(¬ atleast3 X1))SNoLe (binrep (𝒫 (𝒫 (𝒫 ))) ) X7)))))))((TransSet X2((ordinal X2(¬ atleast6 ))(((¬ nat_p X4)((atleast4 X0(¬ SNoLe X5 X3))(¬ exactly2 X2)))(¬ ordinal ))))(((¬ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(((¬ ordinal X0)(¬ exactly2 X4))((¬ exactly2 )exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))((¬ TransSet X4)(¬ exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))SNoLt X1 X4)nat_p X5))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMKaDL4suFdDiNMUBgGJn3mFnQCnCMwWYrg)
∀X0 : set, (∀X1, ∀X2 : set, (¬ set_of_pairs X0)(∀X3X1, ∀X4 : set, (¬ stricttotalorder_i (λX5 : setλX6 : set(¬ stricttotalorder_i (λX7 : setλX8 : set(exactly4 X8(((¬ atleastp X5 X8)((¬ exactly3 )(¬ ordinal X8)))nat_p X7(¬ exactly2 X8)))))))((atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )((¬ atleast3 X3)TransSet X1(¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) ))))TransSet X4)))(∃X1 : set, ((¬ nat_p X0)((∀X2X1, (∀X3X0, (((∀X4X2, ((¬ atleast3 X0)((¬ atleast2 X4)(((¬ atleast4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))inj (binrep (𝒫 (𝒫 (𝒫 ))) ) (λX5 : setbinrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))))(¬ exactly5 X4)(¬ (X4 X0)))(∀X4 : set, (((¬ exactly4 X4)(¬ atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))SNo X2))((∀X4, (¬ (X4 X0)))(∃X4 : set, ((exactly2 X2(¬ reflexive_i (λX5 : setλX6 : setTransSet X6)))trichotomous_or_i (λX5 : setλX6 : set(¬ atleast4 X6)))))))(((SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))linear_i (λX3 : setλX4 : set(exactly2 X1SNo (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))))((∃X3 ∈ X0, (¬ ordinal (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )))(¬ atleast5 X1)))(∀X3 : set, ((∀X4 : set, setsum_p X1)((∃X4 : set, setsum_p X0)(∀X4 : set, SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )(exactly4 X3(((¬ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(exactly5 X2(¬ SNo (Sing X3))))((¬ atleastp X3 X2)(((¬ PNo_downc (λX5 : setλX6 : setprop(¬ ordinal X5)) X4 (λX5 : settotalorder_i (λX6 : setλX7 : set(¬ exactly5 X3))))setsum_p X4)((¬ TransSet X4)(exactly4 X0((atleast5 X4exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(((nat_p (Sep2 (Inj1 X3) (λX5 : setX4) (λX5 : setλX6 : setexactly4 X6(((¬ atleast2 X6)(SNo (proj0 X5)(((¬ TransSet X5)ordinal X5)(atleast2 X0((ordinal X6(¬ atleast2 X6))(¬ exactly2 X5))exactly3 X5(¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))))(¬ atleast5 X5))(atleast6 ((¬ TransSet X5)(¬ exactly5 X0)))(¬ exactly2 )(¬ exactly4 )))exactly2 X1)(((((¬ exactly2 X0)exactly2 X3)((reflexive_i (λX5 : setλX6 : set(¬ exactly3 X0))((¬ exactly3 X1)(¬ exactly5 X4)))exactly3 X4))(exactly3 X3(¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))atleast2 X1((¬ TransSet X0)((¬ equip X3 X3)((TransSet X0((¬ atleast5 X0)(¬ atleast4 X1))(¬ symmetric_i (λX5 : setλX6 : setatleast5 X6)))(¬ stricttotalorder_i (λX5 : setλX6 : setexactly2 X6)))))(¬ atleast6 X4))(¬ atleast4 X4))((¬ SNoEq_ X1 X4 X1)(((SNo X4(atleast2 X3((¬ TransSet X4)(¬ atleast2 X4))))((atleast4 X3((((inj X3 (λX5 : set)atleast5 X1)(¬ SNo X3))(¬ exactly2 X4))(((¬ atleast5 X4)(¬ TransSet X2))exactly5 X4)))(¬ (X4 X2))))(exactly3 X1(exactly4 X1exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))))))))))))))(∃X4 : set, (exactly3 X4(atleast3 X4(atleast4 X3(¬ atleast4 X2))))))))(¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMW1vZr4QjbS5TdPp29oCGWVSd7xqdnfns1)
∃X0 ∈ , ∃X1 ∈ X0, ((∃X2 ∈ X1, ∀X3X1, ∀X4 : set, (((¬ exactly2 X2)(¬ exactly4 X2))(((¬ exactly3 X4)nat_p X2)exactly5 X2)))(¬ reflexive_i (λX2 : setλX3 : set∃X4 : set, ((¬ ordinal X4)((¬ atleast3 X3)(((exactly4 (binunion X2 X3)(((atleast4 X3((¬ exactly3 (V_ (Inj0 X3)))atleast5 X4))(((X0 = binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(¬ atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))(TransSet (𝒫 (binrep (𝒫 (𝒫 )) ))((((((((((nat_p X4exactly2 X4)((¬ exactly3 X2)((¬ atleast3 X3)(((((¬ atleast2 X3)(¬ nat_p X2))(¬ (X3 X3)))reflexive_i (λX5 : setλX6 : set(¬ linear_i (λX7 : setλX8 : setatleast5 X7))))(setsum_p X4atleast6 X3)))))(¬ exactly2 X3))(((¬ atleast5 X0)(exactly5 (¬ atleast3 X2)))(¬ ordinal X3)))(((exactly4 X3(¬ exactly2 X4))(((¬ exactly5 (Inj0 X3))((exactly2 X4setsum_p X4)(TransSet X1atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))atleast5 X2)((¬ exactly3 X3)(atleast2 X4exactly4 ))))(((atleast2 (UPair X3 X2)((((atleast2 X3atleast5 X1)(atleast2 X3(¬ atleast6 X1)))((exactly5 X1(atleast4 X4ordinal (Inj1 X4)))SNo X2(atleast3 X4(((((X1 X4)(¬ exactly2 X4))atleast5 X2)(¬ SNo X1))(¬ ordinal (𝒫 (𝒫 (𝒫 (𝒫 ))))))))((¬ nat_p X1)((¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))((atleast6 X3(¬ TransSet ))(exactly3 X4atleast5 X3))))(((¬ TransSet X3)exactly2 X4)(exactly3 (¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))))((¬ TransSet X3)atleast4 X3)))(¬ TransSet X4))SNo_ X3 X4)(exactly5 X4(¬ atleast6 X4)))atleast6 X1)((¬ atleast2 X0)(atleast4 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))nat_p X1)))exactly3 X3)(SNo (¬ equip X4 )))atleast5 X3)(((¬ exactly5 X2)(equip (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(exactly4 X0(((¬ ordinal X2)(¬ (X2 = X4)))((atleast2 (setminus X4 X3)exactly5 X4exactly2 X4atleast3 X4)(((¬ atleast3 (𝒫 (binrep (𝒫 (𝒫 )) )))(¬ atleast6 X4))((¬ set_of_pairs X4)(¬ exactly3 X0))))))))inj X1 (λX5 : setX5))))))((¬ atleast4 X2)(¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))exactly4 X3)(((inj X4 X2 (λX5 : setX5)(¬ nat_p X4))atleast6 (Inj0 (binrep (𝒫 (𝒫 (𝒫 ))) )))((¬ atleast6 X4)(exactly4 (¬ exactly4 )))))(¬ ordinal X0)))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMVyNJFtYSim3YoDoPQXudCQL8zM9jqUPU9)
∀X0binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ), ∃X1 ∈ , ((atleast2 X0(∀X2 : set, nat_p X2(∀X3X1, ∀X4X0, (( (V_ X1) )(exactly4 X3((((X0 X2)((¬ atleast5 X3)((¬ atleast5 X3)(¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))))((nat_p X4atleastp X4 X2)set_of_pairs X4))((((¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 ))) ))(¬ setsum_p X4))(setsum_p X3((¬ SNo X4)(¬ ( X3)))))((¬ setsum_p X4)nat_p X0)(((atleast2 (𝒫 (𝒫 (𝒫 (𝒫 ))))(¬ exactly4 X4))(¬ atleast2 X4))(¬ nat_p X4))))))((¬ setsum_p X1)exactly2 X3))(∀X3 : set, (∀X4 : set, (¬ SNo X2))(∃X4 ∈ X3, (((¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))(¬ atleast2 X4))atleast5 X3)))(∃X3 : set, ((X3 X1)atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))))(∀X2X1, ∀X3 : set, ((¬ atleast3 X3)atleast5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))ordinal X2))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMJ59S5uzEhEZ4ZXEUTTBuEnrXu78g5Y6fW)
∃X0 : set, ∀X1X0, ∃X2 : set, ((X2 X0)(∀X3 : set, (∀X4 : set, ((((SNo X4strictpartialorder_i (λX5 : setλX6 : setsetsum_p X5))(((((¬ atleast6 ( X0))(¬ exactly4 ))setsum_p (If_i ((((¬ exactly3 (binrep (𝒫 (𝒫 (𝒫 ))) ))atleast5 X4)atleast4 X3)atleast2 X2) (SetAdjoin X0 ) (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))(atleast2 X3(exactly5 (famunion X2 (λX5 : setbinrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ exactly2 X4))))(atleast4 X0(¬ exactly2 (𝒫 (𝒫 (𝒫 (𝒫 ))))))))(atleast6 (SNoElts_ X1)((¬ atleast2 X4)(((¬ atleast6 X2)atleast6 (lam X4 (λX5 : setX2))((((¬ exactly4 X3)(¬ atleast6 X2))(((((¬ atleast3 X0)((((¬ SNo )(¬ (X3 = X2)))strictpartialorder_i (λX5 : setλX6 : setordinal X4))((((exactly3 X4((((¬ atleast3 X4)(¬ exactly2 X4))(((¬ TransSet (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))((¬ atleast6 (𝒫 (binrep (𝒫 (𝒫 )) )))(((¬ setsum_p X0)exactly2 X3)(¬ SNo X1))))(¬ TransSet X4)))(¬ ordinal X3)))nat_p (Sing (Inj1 X3)))(atleast6 X3atleast4 X3))((¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))((¬ setsum_p X4)((((¬ exactly3 (𝒫 (𝒫 (𝒫 (𝒫 )))))((¬ exactly2 X3)(¬ nat_p X4)))exactly2 X2)(¬ exactly4 X2)((¬ ordinal )(¬ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ) binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))))))))atleast4 X3)nat_p X4)SNo (𝒫 (binrep (𝒫 (𝒫 )) ))))exactly3 X2))((¬ exactly3 X0)(¬ TransSet X3))(((SNo X4atleast2 X3)(¬ atleast6 X1))((atleast4 X0(¬ SNo X4))(¬ linear_i (λX5 : setλX6 : set(¬ atleast6 X5)))))(¬ atleast2 X4)))((¬ TransSet X2)SNo X2)))(¬ exactly2 X4))(X2 )(atleast5 X4(((¬ exactly4 X3)(¬ exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))nat_p X1)))(exactly3 X2setsum_p X2)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMS3EDbBZFJzgMToBqJSBQHfXgffL8sHP8c)
∀X0binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ), ∀X1 : set, (((∀X2 : set, ((equip X0 X0((¬ exactly5 X0)(∀X3 : set, ∀X4X0, (((¬ atleast6 X3)(¬ exactly4 X2))atleast4 X1))))(∃X3 : set, ((¬ exactly4 X3)(¬ atleast4 X3))))(∃X3 ∈ binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ), (¬ atleast6 X0)))((∃X2 : set, ((X2 X1)(¬ exactly2 X0)))(∀X2X0, (∀X3X2, ∀X4, nat_p X4set_of_pairs X3ordinal X2)(∀X3 : set, atleast6 X2(∃X4 : set, atleast5 X4)(∃X4 : set, ((X4 X3)(¬ ordinal )))))))atleast5 X1)(¬ exactly2 (𝒫 (binrep (𝒫 (𝒫 )) )))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMdWUezaeWNVY2Frq8i7d1NBK5g4kg5Boh9)
∀X0binrep (𝒫 (binrep (𝒫 (𝒫 )) )) , ∃X1 : set, ((∀X2 : set, (∃X3 : set, ((atleast2 X2(¬ atleast3 X3))(∀X4 : set, (atleast3 X4(¬ atleast4 X3)((((¬ exactly3 )((((¬ SNoLt X3 X3)((((¬ exactly5 X3)TransSet X3)(¬ atleast6 ))(((((¬ exactly2 X4)((((((¬ atleast4 ( (𝒫 (𝒫 (𝒫 (𝒫 ))))))(exactly2 X2ordinal X4))((((atleast2 X1(¬ exactly3 X3)((¬ atleast5 X3)atleast2 X4)nat_p X4)((¬ reflexive_i (λX5 : setλX6 : set(¬ (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) = ))))((¬ exactly3 (Sing ))(¬ exactly4 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))(¬ atleast4 X3)(((¬ TransSet X2)(¬ atleast3 X3))((¬ ordinal )(¬ PNo_upc (λX5 : setλX6 : setprop((¬ X6 X3)nat_p X4)) X0 (λX5 : set(¬ exactly3 X2)))))))(((nat_p X3(¬ atleast2 X4))((¬ ordinal X2)(¬ irreflexive_i (λX5 : setλX6 : set((¬ TransSet (Sep2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ) (λX7 : setX6) (λX7 : setλX8 : set((exactly3 X0tuple_p X3 X6)exactly2 X2)atleast2 X7)))exactly5 X5)))))(((atleast2 X3(TransSet X4exactly3 X2))(PNoLt (binrep (𝒫 (𝒫 (𝒫 ))) ) (λX5 : set((¬ exactly1of2 (atleast6 atleastp X4 X5) ((¬ atleastp X5 (ordsucc X4))(¬ exactly2 X5)))((((¬ exactly3 X4)nat_p (𝒫 (binrep (𝒫 (𝒫 )) )))(¬ exactly4 X5))exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))) X4 (λX5 : set(¬ TransSet X5))atleast3 X3))((reflexive_i (λX5 : setλX6 : set((atleast3 X0(¬ binop_on X6 (λX7 : setλX8 : set)))((¬ SNo_ X0 X5)(¬ exactly5 X3))))(¬ ordinal X3))atleast6 X0))))((((¬ exactly1of3 (((¬ atleast2 X4)(atleast2 X0((reflexive_i (λX5 : setλX6 : set(¬ nat_p X6))(atleast5 X0exactly2 X4TransSet X3(exactly3 X4(X3 X0)))(atleast4 X4(((¬ set_of_pairs X3)(¬ atleast6 X1))(atleast2 X3((¬ setsum_p (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))exactly5 X3)((exactly5 X4(¬ SNo X3))(¬ atleast4 X2))))))(nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )atleast6 X1))))(((¬ exactly5 X2)(¬ ordinal X4))((((nat_p X2(exactly2 X2(((((¬ exactly3 X3)((¬ exactly3 X0)((SNo X4exactly3 X4)((atleast6 ((((exactly5 X3setsum_p X4)((exactly2 X2exactly3 X4)(¬ exactly3 )))exactly2 X4((¬ set_of_pairs (SNoElts_ X3))((¬ exactly2 X3)ordinal X2)))TransSet X4))PNoLt_ X2 (λX5 : set(¬ SNo )) (λX5 : set((¬ atleast3 X4)(¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))))PNo_upc (λX5 : setλX6 : setprop((¬ X6 X4)X6 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ trichotomous_or_i (λX7 : setλX8 : set(¬ atleast6 X8)))) X4 (λX5 : setatleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))))SNo (ordsucc ))((¬ nat_p X3)(¬ atleast3 X0)(¬ setsum_p X4)))(nat_p X4PNoLt_ (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ) (λX5 : setexactly4 ) (λX5 : setatleast6 X4((atleast3 X4TransSet X3)(((¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))((((¬ ordinal X5)(¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))setsum_p X5)(atleast5 X5SNoLe X5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))))((¬ atleast4 (Inj1 ))(¬ atleast4 X2))(¬ atleast5 X5))))))))(¬ atleast5 X2))(¬ reflexive_i (λX5 : setλX6 : set(((¬ SNoEq_ X6 X5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))((exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(¬ tuple_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))) X5))atleast6 X6))(atleast6 X6(¬ atleast5 X5)))(¬ atleast6 X5))))((¬ trichotomous_or_i (λX5 : setλX6 : setexactly3 X0((X6 = X5)(((¬ (X0 X5))((((¬ exactly4 X5)exactly2 X5)(atleast5 X6(((((nat_p X0((¬ atleast3 X6)atleast2 X6exactly4 X5))(atleast5 X6atleast5 X5))((¬ atleast6 (binrep (𝒫 (𝒫 (𝒫 ))) ))exactly2 X5))((¬ exactly2 X2)((TransSet X6(((¬ exactly2 X0)ordinal X5)(¬ atleast3 X4)))set_of_pairs (Sing X6))))(¬ exactly2 X6))))(¬ set_of_pairs X4)))(¬ (X6 binrep (𝒫 (𝒫 (𝒫 ))) ))))((¬ atleast2 X5)nat_p X6)(atleast6 X5((¬ exactly4 X0)exactly3 X6))((¬ TransSet X0)(((¬ ordinal X6)(equip X6 X0(atleast4 X6(¬ exactly5 X5))((¬ atleast2 X1)(TransSet X6((¬ atleastp X5 X3)TransSet X6)))TransSet X0))(¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))))(tuple_p X4 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(¬ nat_p X0)))))) (¬ reflexive_i (λX5 : setλX6 : setatleast2 X0((atleast4 (¬ SNoLt X6 X6))((((¬ atleast2 ( X6))(¬ TransSet ))(¬ ordinal X5))(((¬ set_of_pairs ( X5))((reflexive_i (λX7 : setλX8 : setexactly4 X7(¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))(¬ ordinal )exactly4 X5)(atleast2 X0(¬ atleast3 X5)(¬ TransSet X1))))(symmetric_i (λX7 : setλX8 : set(ordinal (𝒫 (binrep (𝒫 (𝒫 )) ))atleast4 (SNoLev )))symmetric_i (λX7 : setλX8 : setSNoLe (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))(exactly4 (ReplSep X4 (λX7 : set((((((¬ reflexive_i (λX8 : setλX9 : set((((((¬ ordinal X8)((atleast3 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(((¬ setsum_p (𝒫 (𝒫 (𝒫 (𝒫 )))))((¬ tuple_p X9 X5)(exactly4 X0atleast5 X8)))(((exactly3 X3(¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))nat_p X9)(¬ exactly3 X8))))(reflexive_i (λX10 : setλX11 : set(¬ atleast6 X11)atleast5 X11)((exactly4 X8((¬ atleast6 X9)(¬ exactly3 X8)))atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))))(¬ exactly2 ))(¬ exactly4 X9))(TransSet exactly2 X7))(¬ atleast2 (binintersect X9 (ReplSep X8 (λX10 : set((¬ atleast3 X10)TransSet X9)) (λX10 : setbinrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))))atleast6 X9))(((¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(exactly3 (UPair (𝒫 (𝒫 (𝒫 (𝒫 )))) (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))exactly5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))((((¬ atleast3 X7)((¬ SNo (𝒫 X6))inj X6 X7 (λX8 : setX0)))((¬ nat_p X7)exactly4 (UPair X7 X6)))atleast2 X7)))(¬ atleast5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))(¬ nat_p X7))exactly3 atleast6 (𝒫 (binrep (𝒫 (𝒫 )) )))exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))) (λX7 : setX6))ordinal X5)(X5 X5))))) ((¬ nat_p (𝒫 (𝒫 (𝒫 (𝒫 )))))((reflexive_i (λX5 : setλX6 : set((¬ exactly3 X5)PNoLe X0 (λX7 : set(¬ exactly5 (𝒫 (binrep (𝒫 (𝒫 )) )))) X5 (λX7 : set(((¬ TransSet X6)(((((¬ atleast3 (Inj1 X3))(setsum_p X6(atleast6 X6SNoLe (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))(((((¬ (X4 X1))(¬ setsum_p X4))atleast4 X6)(¬ atleast3 X7))(exactly5 X7(X7 ))))(totalorder_i (λX8 : setλX9 : set(¬ setsum_p X9))(¬ setsum_p X6)))set_of_pairs (binrep (𝒫 (𝒫 (𝒫 ))) ))(((¬ exactly2 (𝒫 (binrep (𝒫 (𝒫 )) )))(¬ ordinal X7))(¬ exactly3 X0))))(((¬ set_of_pairs (famunion X6 (λX8 : setX1)))(((binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )) X7)((¬ inj X4 (λX8 : setX7))(¬ bij X7 X2 (λX8 : setX5))))(¬ (X6 X2)))nat_p X6)(¬ atleast3 X6)(atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )exactly4 X0)(¬ atleast3 X1)))))atleast6 X6)((trichotomous_or_i (λX5 : setλX6 : set(¬ stricttotalorder_i (λX7 : setλX8 : set((¬ exactly5 X7)(((¬ atleast6 (Sing (Inj1 )))(¬ exactly3 X8)((¬ nat_p X7)atleast6 X8))atleast6 X8)))))(((ordinal (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )(((exactly3 X3(atleast2 X0TransSet X4))(¬ SNo X3))set_of_pairs X3))exactly5 X3)(atleast3 X4((¬ atleast6 X4)((¬ setsum_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(atleast4 X3equip (Unj (V_ X4)) X3))))))(((exactly2 X3((¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ setsum_p X4)))(¬ exactly5 ))(((atleast3 (((¬ nat_p X3)nat_p X3)(¬ PNoLt_ (λX5 : setordinal X5) (λX5 : set(¬ set_of_pairs X5)(¬ exactly2 (𝒫 (binrep (𝒫 (𝒫 )) )))))))(atleast4 X4(¬ ordinal ))(atleast6 X4(¬ ordinal (binrep (𝒫 (𝒫 (𝒫 ))) )))(¬ exactly2 X4))exactly2 X3)))(¬ ordinal X4))(trichotomous_or_i (λX5 : setλX6 : set(¬ ordinal X0))(¬ exactly3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))))exactly4 X4)(¬ SNo_ (binrep (𝒫 (𝒫 (𝒫 ))) ) X2))(TransSet X1(¬ set_of_pairs X3)))))(((¬ ordinal (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(equip (Sing X4) X4(¬ exactly4 X3)))(¬ setsum_p X0))(¬ ordinal X4))(¬ atleast3 X4))(atleast3 X4(((¬ exactly4 X2)(¬ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ) X4)))(¬ SNo X3)))))exactly4 (𝒫 X2))((¬ atleast6 X3)atleast4 )(((((¬ atleast3 X3)((¬ exactly5 X0)(((atleast2 X0(¬ setsum_p X4))(¬ exactly5 X2))((¬ nat_p X2)((atleast5 X1(reflexive_i (λX5 : setλX6 : set((atleast6 X6nat_p X1)((((((¬ nat_p X6)(((atleast2 X6((nat_p ( X6)(ordinal X5((((((¬ exactly2 X5)((¬ atleast2 X5)(set_of_pairs X0(¬ nat_p X3))))((SNo X1(¬ exactly2 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))(X6 𝒫 (binrep (𝒫 (𝒫 )) ))))(¬ atleast2 X2))exactly2 X6)ordinal X4)))((((((TransSet X6(atleast2 X0((X6 X6)(¬ exactly5 X0))))TransSet X3)(¬ atleast2 X0))((¬ ordinal X5)SNo X6))(¬ ( X6)))(¬ SNo_ X5 X5)))(¬ setsum_p X2)TransSet (PSNo X5 (λX7 : set(¬ exactly2 X0))))(¬ atleast3 X6))((exactly4 X5((((¬ atleast2 X5)(¬ atleast4 X5))exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))(¬ atleast2 X6)))((setsum_p X6((((¬ SNo_ X5 X6)(¬ atleast5 X5))(atleast5 X6((exactly5 X5linear_i (λX7 : setλX8 : set(((ordinal X8(¬ ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))(atleast6 X8((((¬ atleast4 X7)(¬ TransSet X8))SNoEq_ (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ) X7 X7)(¬ setsum_p X2)))(((exactly4 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))(¬ SNo_ X7 ))exactly5 )((¬ atleast5 X1)atleast6 X7reflexive_i (λX9 : setλX10 : set((exactly4 (𝒫 X9)(atleast2 X9((¬ TransSet X0)SNoLt X9)))(((((¬ ordinal X10)(X10 X10)(((¬ equip X9 X9)exactly4 X9)(¬ PNoLe X9 (λX11 : setatleast2 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))) X10 (λX11 : setTransSet X11))))(atleast2 X10(atleast6 X10(¬ atleast6 X9))))(¬ atleast4 X0))atleast3 X9))))))((¬ linear_i (λX9 : setλX10 : set(¬ atleast2 (SNoLev X0))))((((((¬ atleast3 X6)exactly4 X1)(¬ exactly3 X7))atleast2 X6)atleast5 X4)exactly3 )))))(¬ TransSet X5))))SNo X6))exactly5 X6strictpartialorder_i (λX7 : setλX8 : set((TransSet X8(¬ atleast3 X7))atleast5 (binrep (𝒫 (𝒫 (𝒫 ))) )))))(¬ atleast3 X5)))((¬ exactly2 (binunion X6))(¬ exactly2 X4))ordinal X6(((¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 ))) ))atleast5 X6)(¬ set_of_pairs (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))(atleast4 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))atleast3 X4))ordinal X2)(¬ ordinal X2))))(ordinal X2(¬ nat_p X4))))((¬ atleast3 )(¬ exactly3 X4))atleast4 X3))))(¬ atleast3 (proj0 X4))((¬ (X3 X0))((¬ exactly4 X4)(¬ ordinal X3)))exactly5 X2)(¬ atleast2 X4))((¬ SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))((((¬ SNo X2)exactly3 X3)((atleast4 (SNoElts_ X0)(((¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))atleast2 X3)(((¬ SNo X3)(atleast6 X3(¬ setsum_p X4)))(¬ exactly5 X4))))((X3 X4)exactly2 X2)))(((¬ atleast6 X2)(TransSet (𝒫 (𝒫 (𝒫 (𝒫 ))))set_of_pairs X3))((¬ exactly4 X4)eqreln_i (λX5 : setλX6 : set(((((reflexive_i (λX7 : setλX8 : set(exactly4 X7atleast3 X7))exactly5 X6)(((exactly4 X5((((¬ TransSet X0)(((¬ atleast5 X0)(¬ atleast3 X0))(¬ exactly1of2 (ordinal X5((¬ ordinal )(exactly5 (X4 X6)))) (bij X6 X5 (λX7 : setX7)))))(¬ atleast3 (𝒫 (binrep (𝒫 (𝒫 )) ))))((¬ exactly5 X6)(¬ tuple_p (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ) X0))))((¬ exactly1of3 ((((¬ nat_p X5)(¬ ordinal X6))(¬ exactly4 ))(equip X5 X6exactly2 X3)) (((((¬ nat_p X4)(¬ TransSet (Inj0 X5)))((¬ atleast6 X4)exactly5 X3))(nat_p X6((¬ set_of_pairs X6)SNo X1)))TransSet X2) (ordinal X5))(¬ ordinal X0)))(¬ exactly3 X1)))((¬ exactly2 X5)TransSet X5))((¬ exactly4 X2)atleast4 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))exactly3 X6)atleast3 X3))))))((¬ atleast5 X3)((¬ atleast5 X4)(ordinal X3(((¬ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))((¬ eqreln_i (λX5 : setλX6 : set(exactly5 X5exactly2 X5(¬ equip X6 X5))equip (𝒫 X5) X0))(¬ atleast3 X3)))(¬ atleast3 X2)))))))(¬ exactly3 X3))))setsum_p )(¬ atleast5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))((¬ exactly4 X3)(atleast6 X4((¬ exactly5 )(atleast6 X4((SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))(¬ exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))(¬ (𝒫 (binrep (𝒫 (𝒫 )) ) X0)))(¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))))))(atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )setsum_p X3)))SNo_ X4 )))(∃X3 ∈ X0, ∃X4 : set, (¬ exactly5 X3)exactly2 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))(∃X2 ∈ X1, (¬ exactly4 (Sing X0))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMxFuMZ8p3wtyxeQnwJuNFCmsPxdW11TNG)
∀X0 : set, ∃X1 : set, ((∃X2 : set, (((∃X3 : set, ((X3 X2)(∀X4X3, exactly4 X3)))(atleast5 X1(∃X3 : set, ∃X4 : set, ((X4 X3)nat_p X3))))(¬ setsum_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))))(¬ TransSet (𝒫 (𝒫 (𝒫 (𝒫 ))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMNrc2KCLxTd3yiUGAs56oZUEsPV1EYTR6Y)
∃X0 : set, ∀X1binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) , ∀X2 : set, ((∃X3 : set, ((X3 Unj )(∃X4 ∈ X0, exactly3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(¬ nat_p (Unj X3)))))(∀X3binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ), (((∃X4 : set, (((¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))set_of_pairs X0)(((¬ exactly3 X3)(atleast4 (𝒫 X2)((¬ exactly2 X2)(¬ atleast3 X1))))((¬ atleast5 X2)atleast4 X3))))(∀X4combine_funcs (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))) X0 (λX5 : setX1) (λX5 : setX0) X3, atleastp (binrep (𝒫 (𝒫 (𝒫 ))) )))(∃X4 : set, (atleast5 X3nat_p )))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMRX9PjGutHoE4dx51GKvGBQ3Tb5QadGwhM)
∀X0 : set, (∃X1 : set, ((¬ atleast4 X0)(nat_p X1(∃X2 ∈ X0, ((((¬ exactly2 )(∃X3 : set, (((∃X4 ∈ X2, (¬ tuple_p X2 X4))(∀X4 : set, (¬ exactly4 X4)(((¬ exactly2 X3)((¬ exactly4 X4)((¬ exactly4 (If_i ((¬ atleast2 X3)((¬ atleast6 X3)(SNo X2(¬ nat_p (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ))))((¬ atleast6 X3)SNo_ X2 X3))) X3 X3))(TransSet X1SNo X4)(((¬ exactly2 X1)reflexive_i (λX5 : setλX6 : setatleast5 ))((¬ atleast6 X4)(¬ exactly4 (𝒫 (𝒫 (𝒫 (𝒫 ))))))))))exactly5 X3)))(∃X4 : set, ((X4 X0)(¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))))))(∀X3 : set, ∃X4 : set, ((¬ atleast5 X3)(binrep (𝒫 (binrep (𝒫 (𝒫 )) )) binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))))(∃X3 : set, setsum_p X1))))))(∀X1 : set, exactly2 X1)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMcpceQpQNqYrFSdTcmp9eocBpjej63CHBi)
∀X0setprod (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) , ∀X1, ∀X2 X0, ((∀X3X1, ∀X4 : set, ((PNoLe X3 (λX5 : set(((¬ atleast5 X4)(set_of_pairs X1((¬ exactly4 (V_ ))((atleast4 X1exactly2 X4)(¬ exactly4 X2)))))(¬ atleast4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))) (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))) (λX5 : setexactly5 )(¬ nat_p X2))atleast5 X3))(ordinal ordinal (SetAdjoin X1 X0)))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMPncFFKDBfyAiv3xiPJaCwBjeHmqB2fhpz)
∃X0 : set, ∀X1 : set, (∀X2 : set, (∀X3X2, (¬ ordinal X2))(∃X3 : set, (exactly2 X2((((∀X4 : set, (exactly4 X3(((¬ exactly4 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))(((atleast6 X2(¬ nat_p X2))ordinal X2)(((¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ atleast6 X2))((¬ exactly4 )(((¬ atleast2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(((¬ exactly3 )((¬ atleast2 X4)(¬ exactly4 X1)))atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))(¬ setsum_p (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))))))(¬ exactly2 X3))))(¬ atleast2 ))(∀X4 : set, (¬ atleast3 )((¬ TransSet X3)exactly5 X3setsum_p (In_rec_i (λX5 : setλX6 : setsetX5) X3))exactly2 X4ordinal (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))(∀X4 : set, (¬ (X4 X2)))))))(∀X2 : set, atleast6 X1((exactly5 X0(∃X3 : set, ((X3 X2)(¬ (X3 X3)))))atleast3 X1))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMKGg6bjyafH3UEZ9AVdDgdKtDs2o3L2K5M)
∃X0 : set, ((X0 binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(∃X1 : set, ((∃X2 : set, ((∃X3 ∈ X1, (¬ ordinal (binrep (𝒫 (𝒫 (𝒫 ))) )))(∃X3 : set, ((∀X4X3, ((¬ nat_p X3)(¬ atleast5 X0)))(∀X4ordsucc X3, ((¬ TransSet (ordsucc X4))(((((¬ atleast2 X4)atleast2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))atleast3 (Inj0 X2))(¬ SNo X4))exactly2 (𝒫 (binrep (𝒫 (𝒫 )) ))(set_of_pairs (¬ reflexive_i (λX5 : setλX6 : setatleast2 X0)))(((atleast4 X0(X4 X4))(((X1 X3)ordinal X3)(¬ atleast4 X3)))(((((¬ exactly4 (Inj1 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))exactly3 )ordinal X3)atleast5 (𝒫 X4))((nat_p SNo (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))((nat_p X4(¬ exactly5 X1))SNo_ X3 X2)exactly4 X2)exactly5 X2(TransSet X3(exactly2 X0(¬ exactly3 X4))))exactly4 X3)((reflexive_i (λX5 : setλX6 : setTransSet X6)((¬ TransSet X4)(atleast2 X2exactly2 X4)))(¬ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))))))))((∀X2X1, atleast2 X2)(exactly3 X1exactly3 X1)))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMHHNhV8Kf4qQtiRNYhHucq3HF6gAE2ZmxL)
∀X0 : set, ∀X1 : set, ((∃X2 ∈ X0, ∀X3 : set, ∃X4 : set, (¬ setsum_p X0))(∀X2, (((∃X3 : set, (¬ atleast5 X3))(∃X3 : set, ((X3 𝒫 X1)((∃X4 ∈ X3, ((totalorder_i (λX5 : setλX6 : set(¬ TransSet X6))TransSet X3)((¬ ordinal (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))exactly2 )))(¬ set_of_pairs X2)))))(¬ atleast4 X1))))(¬ SNo X1)
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMJqB1iZtcmcnmmj4zHkt6tvjHWaRRjgcAf)
∃X0 : set, ((X0 Sing (Inj1 ))(∃X1 : set, (atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )(∀X2X1, ((∃X3 ∈ X2, ∃X4 : set, ((X4 X2)(¬ TransSet X4)))(∀X3 : set, ∀X4 : set, (¬ TransSet (Sing X3))((¬ exactly3 X3)((¬ exactly5 X3)(atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))((((¬ PNoLt X1 (λX5 : setSNoLt X4 X1atleast2 X1) X4 (λX5 : set((SNo_ X4 X5(((((((reflexive_i (λX6 : setλX7 : set(¬ SNoLt (setsum X6 ) ))(((((nat_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))(((ordinal X4(((exactly4 X5bij X4 X5 (λX6 : set))((¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))(¬ SNoEq_ X5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) X5)))(ordinal X4(𝒫 (𝒫 (𝒫 (𝒫 ))) = binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))))(¬ atleast5 X2))(((atleast4 X2reflexive_i (λX6 : setλX7 : set(¬ ordinal X6))(¬ (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) X4)))nat_p )((ordinal (binrep (𝒫 (𝒫 (𝒫 ))) )TransSet X2)((¬ nat_p X4)atleast4 X4)(¬ exactly5 X4)))))atleast4 X0ordinal X5)((exactly4 X2(¬ ordinal X5))(¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))exactly4 X2)((¬ exactly4 X2)set_of_pairs X4)))((¬ atleast3 X4)((((exactly5 X4atleastp X4 )(¬ setsum_p X1))(¬ (X5 = )))atleast6 X5)))ordinal X0)(¬ exactly5 X3))((¬ atleast2 X5)(¬ exactly2 X0)(atleast2 X2(¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 ))) ))))(¬ binop_on X5 (λX6 : setλX7 : setX3)))(atleast6 X0(𝒫 (𝒫 (𝒫 (𝒫 ))) X5)))((X4 X5)(¬ exactly3 X3)exactly2 X5binop_on (add_nat X5 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )) (λX6 : setλX7 : setX6)(¬ atleast5 X4))atleast5 X5(¬ exactly5 X3)))(¬ exactly4 X3))))(¬ exactly3 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))(exactly4 X4exactly5 X3(¬ TransSet X3))exactly2 X3)(¬ atleast4 X4)))))))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMcgdaBGfKewahqjhbs8MKT1m34UvK9z6qw)
∀X0binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) , ∃X1 ∈ X0, (((∀X2 : set, PNoEq_ X0 (λX3 : setexactly4 (∃X4 : set, ((X4 X2)(¬ atleast4 X0)))) (λX3 : set∀X4 : set, ((¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(¬ ordinal X0))))(∃X2 ∈ setprod X1 X1, (¬ trichotomous_or_i (λX3 : setλX4 : set(¬ atleast3 ( X2))))))(∀X2X1, ∀X3 : set, ∀X4 : set, ((((atleast3 X4(((¬ nat_p )nat_p X3)(¬ TransSet X2)))PNoLt X3 (λX5 : set(¬ atleast5 X5)) X0 (λX5 : setatleast6 X5))((exactly2 X2(atleast5 X2((¬ atleast4 X0)exactly4 X3)))(ordinal X3exactly5 X4)))(¬ nat_p X1)(X4 X3))atleast6 X4))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMUxAi7EPPgnsqda19SBVyQ3cQAg3Uo2gZ4)
∃X0 : set, ∃X1 : set, ((X1 X0)((((∀X2X1, ∀X3 : set, atleast4 X3((∀X4binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) , (¬ exactly2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))(((∀X4 : set, ((¬ SNoLt X3 X4)(¬ atleast6 )))(∃X4 : set, ((((¬ nat_p X0)(¬ exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))((((binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) X0)set_of_pairs X4)(¬ TransSet (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))((¬ TransSet X4)(¬ atleast6 X4)))((¬ exactly5 X3)(X1 X3))(¬ atleast6 X4))atleast5 X1)))(¬ SNo X1))))(∃X2 : set, ((X2 X1)(∃X3 : set, ∀X4 : set, (¬ tuple_p X3 (𝒫 (𝒫 (𝒫 (𝒫 )))))(((¬ exactly5 X4)((¬ exactly5 X3)(¬ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))))))((((exactly3 X4atleast4 X2)(¬ set_of_pairs X0))((¬ atleast6 X3)((¬ atleast3 (Sing ))((SNo X3(¬ atleast3 ))((((exactly3 X4(¬ atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))((¬ exactly4 X3)(¬ SNoLt X4 X2)))(atleast2 X2((¬ exactly5 X0)atleast2 X3)))(¬ atleast3 X0)))))(¬ atleast5 X2))((¬ atleast6 X4)(¬ atleast6 X1))atleast4 X4))))))(∀X2 : set, ∀X3X1, ∃X4 : set, ((X4 X1)exactly2 X1)))(atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))PNo_upc (λX2 : setλX3 : setprop∃X4 ∈ X1, atleast5 X2) X1 (λX2 : set∀X3 : set, ((∀X4 : set, ((¬ exactly4 X2)(atleast3 X4((eqreln_i (λX5 : setλX6 : setatleast4 )((¬ SNo X3)((¬ TransSet X4)(¬ SNo X3))))((¬ ordinal X0)TransSet )))))(∀X4 : set, ((SNoLe X2 X3exactly2 X4)(¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 )))))(¬ exactly4 X4)))ordinal X2))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMUXeTzGW9gXMcuaxMwUt9HxP8AY9gruzX)
∀X0binrep (𝒫 (binrep (𝒫 (𝒫 )) )) , ∀X1 : set, ∀X2 : set, (¬ atleast5 X0)(∃X3 : set, ((¬ setsum_p X1)(∃X4 : set, ((¬ SNo X2)((atleast4 X3((exactly2 X2(¬ (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )))stricttotalorder_i (λX5 : setλX6 : set((¬ (X3 X1))(((atleast2 (V_ )(atleast2 X5(nat_p SNo )))(¬ trichotomous_or_i (λX7 : setλX8 : setordinal X7)))((¬ (X6 X5))(atleast2 X0atleast6 X0))))))(¬ setsum_p X3))(¬ nat_p (𝒫 (𝒫 (𝒫 (𝒫 )))))(¬ exactly4 X2))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMbm9FVPoEuMHStK2svKxfNPrLvo31K3vt4)
∀X0, ∃X1 : set, ((X1 )((∃X2 ∈ X1, exactly5 X2)(∀X2 : set, ∀X3X2, (((atleast2 X1(∃X4 : set, ((¬ atleast2 )ordinal )))(exactly3 X2((X0 X2)(∃X4 ∈ binrep (𝒫 (binrep (𝒫 (𝒫 )) )) , SNo X0))))(∀X4X2, ((((exactly4 X4(¬ exactly4 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))((¬ TransSet X4)exactly2 X4))exactly5 X2)(atleast5 X4((¬ atleast4 X4)(atleast6 X0(¬ TransSet (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))))(¬ TransSet (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))))))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMMYD3CSnpkbzApiFyit1txz8qx4n3XG3ni)
∀X0binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )), ∀X1binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ), ∃X2 ∈ binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) , ∀X3 : set, ((¬ atleast2 X3)(∃X4 : set, (((¬ nat_p X1)(((¬ TransSet X2)(exactly2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )(¬ atleast5 X2)))((¬ ordinal X3)(¬ ordinal X1))))(nat_p atleast4 X4))))atleast4 X3
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMLfTshnBYQKMWxMNiKKbnmVivnKDX39hDj)
∃X0 ∈ , ∀X1binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 ), ∀X2Inj0 X0, ∀X3 : set, (¬ PNoLt X1 (λX4 : set(¬ bij X2 X1 (λX5 : setX4))((((((atleast2 (binrep (𝒫 (𝒫 (𝒫 ))) )((¬ atleast4 X3)((¬ atleast6 X2)((TransSet ((((bij X2 X3 (λX5 : setX4)(¬ exactly5 X1)(¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))atleast3 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))ordinal X3)(¬ TransSet X3))(atleast2 (set_of_pairs X3atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))))atleast3 X3))))exactly2 X2)atleast2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 ))))(((atleast2 X3(((¬ atleast3 X0)(((((((¬ atleast4 X3)(ordinal (¬ atleast5 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))))((¬ (Sing X2 X1))((¬ exactly2 X3)((¬ exactly5 (binrep (𝒫 (𝒫 (𝒫 ))) ))(¬ (X3 = X4))))))atleast3 X4atleast6 X1)(¬ atleast6 X3))nat_p X3)((¬ atleast6 )(¬ exactly2 X1))))((¬ atleast3 (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )))symmetric_i (λX5 : setλX6 : set(¬ atleast5 X5)(((atleast3 X6((¬ reflexive_i (λX7 : setλX8 : setatleast4 X7))(¬ exactly4 X6))(¬ exactly5 X0)TransSet (setminus X2 X5))(((¬ exactly5 X5)((¬ atleastp (𝒫 (𝒫 (𝒫 (𝒫 )))) X6)(((((¬ nat_p X4)(¬ SNoLt X6 X6))ordinal )(¬ atleast3 X6))(¬ ordinal X5))))(((((exactly4 (UPair X6 X5)(TransSet X3(setsum_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))(((((¬ (X5 = SetAdjoin X3 X4))exactly5 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))(((atleast6 X0(exactly3 X6(nat_p X6((((((((¬ atleast4 )atleast5 X5)(antisymmetric_i (λX7 : setλX8 : set((exactly5 X7(¬ exactly3 X8)(¬ nat_p X7))(¬ (X2 X7))))(¬ atleast5 X6)))(¬ atleast6 X5))(((((¬ exactly4 X6)(set_of_pairs X5(¬ TransSet X6)))((SNo X2(((¬ tuple_p X6 X5)((¬ exactly4 X1)((atleast3 X5(atleast5 X6((exactly5 X0((¬ nat_p X5)(¬ SNoLt X6 X0)))atleast4 X0)))TransSet X0)))exactly3 ))(((¬ atleast2 (Inj1 X3))ordinal (TransSet X6(exactly4 X6(¬ SNoLt X1 ))))((((¬ atleast5 X6)exactly4 X5)((¬ nat_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))setsum_p X5))(exactly2 X0(atleast4 X0((¬ exactly3 X5)(((((¬ atleast6 X1)atleast6 X6)(¬ ordinal (ordsucc X6)))((exactly2 X6(¬ nat_p X1))atleast5 X5))(((¬ atleast6 X0)(atleast5 X5((¬ ordinal )exactly5 X5(((((¬ atleast3 X2)(TransSet X6(¬ ordinal X4)))(((¬ exactly3 X6)(¬ exactly2 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) )))(atleast6 X0SNoEq_ X6 X5 X3)))((¬ atleast2 (SNoLev X5))(¬ tuple_p X6 X6)))((((¬ SNoLt X6 X0)((((((¬ ordinal X6)(((exactly4 X5(¬ exactly3 X5))((setsum_p X5((((¬ atleast4 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) ))(((((exactly5 X6((¬ set_of_pairs X6)((¬ exactly3 X3)(¬ TransSet X5))))bij X5 X6 (λX7 : setbinrep (𝒫 (𝒫 (𝒫 (𝒫 )))) ))(¬ atleast4 X5))atleast4 X0)(¬ exactly4 X3)))((¬ tuple_p X2 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))(¬ setsum_p X5)))(nat_p X5(¬ atleast5 X1))))TransSet X0))PNoLt X5 (λX7 : set(¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))(((¬ TransSet )(((((¬ TransSet X7)(((¬ TransSet X1)((¬ atleast6 X7)(atleast3 X7(atleast2 X7(¬ atleast2 X2)SNo X7)(exactly2 X7(¬ exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )))((¬ exactly4 X7)(¬ SNo X0)))))(((nat_p atleast5 (ordsucc X6))SNo_ X3 X7)(¬ exactly2 X1))))atleast4 (Inj0 (Inj1 X7)))(((SNo X1atleast5 )atleast6 X6)((X0 X0)((¬ exactly3 X4)(¬ exactly2 X6)))))(((((atleast4 X6((¬ exactly5 X6)partialorder_i (λX8 : setλX9 : setexactly3 X3)))((¬ SNoEq_ X2 X6 )(¬ atleast3 X7)))exactly4 X6)(TransSet X7((¬ linear_i (λX8 : setλX9 : set((¬ irreflexive_i (λX10 : setλX11 : setsetsum_p X11))(((((X8 X9)((¬ exactly4 X0)((¬ exactly3 X3)(atleast6 X2((((¬ atleast5 X5)nat_p X1)(¬ nat_p X0))(¬ exactly5 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))))(¬ strictpartialorder_i (λX10 : setλX11 : set((atleast2 (¬ atleast2 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )))exactly5 ))))))atleast4 X9)((((¬ atleast3 X8)(¬ atleast6 X9))atleast5 X8)(¬ TransSet X8)))(((¬ nat_p X6)(¬ TransSet X0))ordinal X8((atleast2 X6nat_p TransSet X9)(¬ ordinal X9)))))))(¬ atleast2 X6)))(¬ tuple_p (Inj0 X6) X6))atleast3 X2)ordinal X5)(¬ ordinal X0))((X1 binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) )((¬ atleast4 X3)(¬ SNoLt (binrep (𝒫 (𝒫 (𝒫 ))) ) X6))))((((¬ nat_p (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))((¬ setsum_p X2)(¬ atleast6 X7)))((exactly3 X7((¬ reflexive_i (λX8 : setλX9 : set(((((((¬ exactly3 X8)(((X8 X4)TransSet X4)(((SNo X1((¬ SNo X4)(¬ atleast6 X9))atleast6 X9)(¬ setsum_p X2))((atleast4 (¬ atleast3 (𝒫 X9)))atleast2 X9))))(¬ atleastp X9 X8))exactly4 X9)exactly3 X9)((((¬ nat_p X9)(¬ exactly4 X0))(((¬ setsum_p X9)exactly2 X9)((((¬ setsum_p X9)exactly2 )((¬ atleast2 X8)(¬ exactly3 X4)))(¬ exactly5 X1))))((((ordinal X8(¬ setsum_p X8))(¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))(¬ atleast6 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 ))))exactly2 X1)))atleast6 X9)))(TransSet X7(¬ setsum_p (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 ))))))atleast6 X1)(¬ transitive_i (λX8 : setλX9 : set(¬ atleast6 X4)(atleast6 X9setsum_p X0)reflexive_i (λX10 : setλX11 : setatleast2 X9)((¬ atleast5 X6)(¬ atleast2 X8)))))((((TransSet X7atleast3 X0)(¬ atleast6 X6))(¬ TransSet X7))exactly4 X7))) X5 (λX7 : set(exactly3 X7(atleast2 X6(¬ setsum_p X0))))))(((¬ atleast6 X5)(¬ exactly3 (add_nat X0)))exactly5 X0(¬ exactly2 X6)))atleast6 X5)(X6 X6))((¬ exactly5 X6)(¬ SNo X6)))(¬ ordinal X5)(¬ atleast2 X5)(((¬ SNo X0)(((¬ (X0 𝒫 (binrep (𝒫 (𝒫 )) )))atleast3 X6)((¬ atleast2 X4)binop_on X6 (λX7 : setλX8 : setbinrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )))))(exactly3 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) )(SNo X5setsum_p X5(¬ set_of_pairs (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) )))trichotomous_or_i (λX7 : setλX8 : set(¬ exactly4 X6)))))(¬ atleast2 ))(¬ atleast6 X0)))))((set_of_pairs X5((¬ TransSet X5)atleast6 X0))((((((¬ PNoEq_ X3 (λX7 : set(¬ exactly4 (binrep (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) ))) (λX7 : setSNo_ (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) )))SNoLt X6 X4)(¬ atleast2 X6))exactly3 (Inj0 X5))((atleast4 (proj1 X4)(¬ (X5 X5)))(¬ atleast4 X5)))exactly2 (setminus X5 X3))))(¬ (X6 X1)))))))))(¬ atleast5 X5)))(¬ atleast3 X5))exactly2 X0))(X3 X5))SNo X1)atleast3 X6))))tuple_p X6 X6)(equip X0 X6((¬ atleast2 X0)(((¬ nat_p X5)TransSet X6)(¬ (X5 X2)))))))((¬ atleast3 (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ))(¬ atleast5 )))(((((¬ tuple_p X5 X5)(¬ ordinal X6))exactly5 X5)set_of_pairs (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )))(atleast3 X5(atleast6 X6(¬ atleast5 X6)))setsum_p X5(¬ exactly2 X5)exactly2 (binrep (binrep (𝒫 (𝒫 (𝒫 ))) (𝒫 )) )(¬ atleast6 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) ))atleast4 X6))(¬ atleast6 X6)))))(¬ exactly2 X6))(¬ atleast5 (binunion X1 X2)))atleast2 X0)((((((¬ ordinal X5)(¬ atleast4 X5))(TransSet X6(¬ setsum_p X5)))((((¬ (X6 X1))exactly5 (setprod X4 X3)exactly5 X5PNoEq_ (Inj0 (binintersect (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) ))) (λX7 : setnat_p ( X6)) (λX7 : set(¬ exactly5 X6)))(¬ atleast6 X6))(¬ exactly5 X5)))(¬ atleast3 X0))((¬ atleastp X5 (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))(¬ atleast3 X4))))))exactly5 X2))( X2))))nat_p X4)(¬ atleast2 X3)))((¬ exactly2 (𝒫 (𝒫 (𝒫 (𝒫 )))))(¬ exactly4 X3)))(exactly2 X3(¬ nat_p X3))exactly3 X4)(bij X3 X4 (λX5 : setX5)(((((((nat_p X2(¬ exactly2 X3))(¬ atleast3 X4)(¬ ordinal X4))((exactly4 X3exactly4 X4)setsum_p X1(((atleast3 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) )(¬ atleast4 X4))(((((¬ exactly3 X2)(¬ atleast2 (binrep (𝒫 (𝒫 (𝒫 ))) )))(atleast4 (¬ atleast4 X0)))reflexive_i (λX5 : setλX6 : set(¬ ordinal (binunion X5 X0))))(¬ exactly3 X3)))(atleast3 (UPair X4 X2)(exactly5 X3(atleast5 X1(¬ TransSet X3)))))))(¬ SNo X4))( (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 )) = X4))(¬ exactly2 (binrep (𝒫 (𝒫 (𝒫 (𝒫 )))) (𝒫 (𝒫 )))))(X4 X2)(¬ atleast2 X2)))) (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 )) (λX4 : setatleast3 X2))
Proof:
The rest of this subproof is missing.
Theorem. (conj_Random1_TMcECSsBjuKKHaiVUngwnNXxHPbv584cXv5)
∃X0 : set, ∀X1 : set, ((∀X2 : set, exactly5 X0(∃X3 : set, ((X3 )(atleast5 X1transitive_i (λX4 : setλX5 : set((¬ TransSet (binrep (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )) ))atleast4 X5)((SNo_ (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) ) X2(((¬ exactly2 (V_ X4))atleast2 (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 )))atleast3 X1))atleast4 X0))))))(¬ SNo_ X1 X0))(¬ exactly1of2 (((∀X2 : set, ∃X3 ∈ ordsucc X0, (∀X4 : set, ((¬ atleast3 (𝒫 (𝒫 (𝒫 (𝒫 )))))(SNoEq_ X4 X4 X0(¬ setsum_p (binrep (binrep (𝒫 (binrep (𝒫 (𝒫 )) )) (𝒫 (𝒫 ))) (𝒫 ))))))(¬ atleast5 X3))(∃X2 : set, ∃X3 : set, (¬ atleast3 X3)))(∀X2X0, TransSet X2(∀X3X0, ∃X4 : set, ((X4 X3)(¬ ordinal X4))))) (∀X2 : set, (¬ exactly2 X2)(∃X3 : set, ∃X4 : set, ((SNo atleast6 X4)exactly3 X3))))
Proof:
The rest of this subproof is missing.
End of Section Random1