Beginning of Section SurrealMul
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Definition. We define
mul_SNo to be
SNo_rec2 (λx y m ⇒ SNoCut ({m (w 0 ) y + m x (w 1 ) + - m (w 0 ) (w 1 ) |w ∈ SNoL x ⨯ SNoL y } ∪ {m (z 0 ) y + m x (z 1 ) + - m (z 0 ) (z 1 ) |z ∈ SNoR x ⨯ SNoR y } ) ({m (w 0 ) y + m x (w 1 ) + - m (w 0 ) (w 1 ) |w ∈ SNoL x ⨯ SNoR y } ∪ {m (z 0 ) y + m x (z 1 ) + - m (z 0 ) (z 1 ) |z ∈ SNoR x ⨯ SNoL y } ) ) of type
set → set → set .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Theorem. (
mul_SNo_eq )
∀x, SNo x → ∀y, SNo y → x * y = SNoCut ({(w 0 ) * y + x * (w 1 ) + - (w 0 ) * (w 1 ) |w ∈ SNoL x ⨯ SNoL y } ∪ {(z 0 ) * y + x * (z 1 ) + - (z 0 ) * (z 1 ) |z ∈ SNoR x ⨯ SNoR y } ) ({(w 0 ) * y + x * (w 1 ) + - (w 0 ) * (w 1 ) |w ∈ SNoL x ⨯ SNoR y } ∪ {(z 0 ) * y + x * (z 1 ) + - (z 0 ) * (z 1 ) |z ∈ SNoR x ⨯ SNoL y } )
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_eq_2 )
∀x y, SNo x → SNo y → ∀p : prop , (∀L R, (∀u, u ∈ L → (∀q : prop , (∀w0 ∈ SNoL x , ∀w1 ∈ SNoL y , u = w0 * y + x * w1 + - w0 * w1 → q ) → (∀z0 ∈ SNoR x , ∀z1 ∈ SNoR y , u = z0 * y + x * z1 + - z0 * z1 → q ) → q ) ) → (∀w0 ∈ SNoL x , ∀w1 ∈ SNoL y , w0 * y + x * w1 + - w0 * w1 ∈ L ) → (∀z0 ∈ SNoR x , ∀z1 ∈ SNoR y , z0 * y + x * z1 + - z0 * z1 ∈ L ) → (∀u, u ∈ R → (∀q : prop , (∀w0 ∈ SNoL x , ∀z1 ∈ SNoR y , u = w0 * y + x * z1 + - w0 * z1 → q ) → (∀z0 ∈ SNoR x , ∀w1 ∈ SNoL y , u = z0 * y + x * w1 + - z0 * w1 → q ) → q ) ) → (∀w0 ∈ SNoL x , ∀z1 ∈ SNoR y , w0 * y + x * z1 + - w0 * z1 ∈ R ) → (∀z0 ∈ SNoR x , ∀w1 ∈ SNoL y , z0 * y + x * w1 + - z0 * w1 ∈ R ) → x * y = SNoCut L R → p ) → p
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_prop_1 )
∀x, SNo x → ∀y, SNo y → ∀p : prop , (SNo (x * y ) → (∀u ∈ SNoL x , ∀v ∈ SNoL y , u * y + x * v < x * y + u * v ) → (∀u ∈ SNoR x , ∀v ∈ SNoR y , u * y + x * v < x * y + u * v ) → (∀u ∈ SNoL x , ∀v ∈ SNoR y , x * y + u * v < u * y + x * v ) → (∀u ∈ SNoR x , ∀v ∈ SNoL y , x * y + u * v < u * y + x * v ) → p ) → p
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_eq_3 )
∀x y, SNo x → SNo y → ∀p : prop , (∀L R, SNoCutP L R → (∀u, u ∈ L → (∀q : prop , (∀w0 ∈ SNoL x , ∀w1 ∈ SNoL y , u = w0 * y + x * w1 + - w0 * w1 → q ) → (∀z0 ∈ SNoR x , ∀z1 ∈ SNoR y , u = z0 * y + x * z1 + - z0 * z1 → q ) → q ) ) → (∀w0 ∈ SNoL x , ∀w1 ∈ SNoL y , w0 * y + x * w1 + - w0 * w1 ∈ L ) → (∀z0 ∈ SNoR x , ∀z1 ∈ SNoR y , z0 * y + x * z1 + - z0 * z1 ∈ L ) → (∀u, u ∈ R → (∀q : prop , (∀w0 ∈ SNoL x , ∀z1 ∈ SNoR y , u = w0 * y + x * z1 + - w0 * z1 → q ) → (∀z0 ∈ SNoR x , ∀w1 ∈ SNoL y , u = z0 * y + x * w1 + - z0 * w1 → q ) → q ) ) → (∀w0 ∈ SNoL x , ∀z1 ∈ SNoR y , w0 * y + x * z1 + - w0 * z1 ∈ R ) → (∀z0 ∈ SNoR x , ∀w1 ∈ SNoL y , z0 * y + x * w1 + - z0 * w1 ∈ R ) → x * y = SNoCut L R → p ) → p
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_Lt )
∀x y u v, SNo x → SNo y → SNo u → SNo v → u < x → v < y → u * y + x * v < x * y + u * v
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_Le )
∀x y u v, SNo x → SNo y → SNo u → SNo v → u ≤ x → v ≤ y → u * y + x * v ≤ x * y + u * v
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_SNoL_interpolate )
∀x y, SNo x → SNo y → ∀u ∈ SNoL (x * y ) , (∃v ∈ SNoL x , ∃w ∈ SNoL y , u + v * w ≤ v * y + x * w ) ∨ (∃v ∈ SNoR x , ∃w ∈ SNoR y , u + v * w ≤ v * y + x * w )
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_SNoR_interpolate )
∀x y, SNo x → SNo y → ∀u ∈ SNoR (x * y ) , (∃v ∈ SNoL x , ∃w ∈ SNoR y , v * y + x * w ≤ u + v * w ) ∨ (∃v ∈ SNoR x , ∃w ∈ SNoL y , v * y + x * w ≤ u + v * w )
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_Subq_lem )
∀x y X Y Z W, ∀U U', (∀u, u ∈ U → (∀q : prop , (∀w0 ∈ X , ∀w1 ∈ Y , u = w0 * y + x * w1 + - w0 * w1 → q ) → (∀z0 ∈ Z , ∀z1 ∈ W , u = z0 * y + x * z1 + - z0 * z1 → q ) → q ) ) → (∀w0 ∈ X , ∀w1 ∈ Y , w0 * y + x * w1 + - w0 * w1 ∈ U' ) → (∀w0 ∈ Z , ∀w1 ∈ W , w0 * y + x * w1 + - w0 * w1 ∈ U' ) → U ⊆ U'
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Beginning of Section mul_SNo_assoc_lems
Variable M : set → set → set
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
M .
Hypothesis SNo_M : ∀x y, SNo x → SNo y → SNo (x * y )
Hypothesis DL : ∀x y z, SNo x → SNo y → SNo z → x * (y + z ) = x * y + x * z
Hypothesis DR : ∀x y z, SNo x → SNo y → SNo z → (x + y ) * z = x * z + y * z
Hypothesis IL : ∀x y, SNo x → SNo y → ∀u ∈ SNoL (x * y ) , ∀p : prop , (∀v ∈ SNoL x , ∀w ∈ SNoL y , u + v * w ≤ v * y + x * w → p ) → (∀v ∈ SNoR x , ∀w ∈ SNoR y , u + v * w ≤ v * y + x * w → p ) → p
Hypothesis IR : ∀x y, SNo x → SNo y → ∀u ∈ SNoR (x * y ) , ∀p : prop , (∀v ∈ SNoL x , ∀w ∈ SNoR y , v * y + x * w ≤ u + v * w → p ) → (∀v ∈ SNoR x , ∀w ∈ SNoL y , v * y + x * w ≤ u + v * w → p ) → p
Hypothesis M_Lt : ∀x y u v, SNo x → SNo y → SNo u → SNo v → u < x → v < y → u * y + x * v < x * y + u * v
Hypothesis M_Le : ∀x y u v, SNo x → SNo y → SNo u → SNo v → u ≤ x → v ≤ y → u * y + x * v ≤ x * y + u * v
Theorem. (
mul_SNo_assoc_lem1 )
∀x y z, SNo x → SNo y → SNo z → (∀u ∈ SNoS_ (SNoLev x ) , u * (y * z ) = (u * y ) * z ) → (∀v ∈ SNoS_ (SNoLev y ) , x * (v * z ) = (x * v ) * z ) → (∀w ∈ SNoS_ (SNoLev z ) , x * (y * w ) = (x * y ) * w ) → (∀u ∈ SNoS_ (SNoLev x ) , ∀v ∈ SNoS_ (SNoLev y ) , u * (v * z ) = (u * v ) * z ) → (∀u ∈ SNoS_ (SNoLev x ) , ∀w ∈ SNoS_ (SNoLev z ) , u * (y * w ) = (u * y ) * w ) → (∀v ∈ SNoS_ (SNoLev y ) , ∀w ∈ SNoS_ (SNoLev z ) , x * (v * w ) = (x * v ) * w ) → (∀u ∈ SNoS_ (SNoLev x ) , ∀v ∈ SNoS_ (SNoLev y ) , ∀w ∈ SNoS_ (SNoLev z ) , u * (v * w ) = (u * v ) * w ) → ∀L, (∀u ∈ L , ∀q : prop , (∀v ∈ SNoL x , ∀w ∈ SNoL (y * z ) , u = v * (y * z ) + x * w + - v * w → q ) → (∀v ∈ SNoR x , ∀w ∈ SNoR (y * z ) , u = v * (y * z ) + x * w + - v * w → q ) → q ) → ∀u ∈ L , u < (x * y ) * z
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_assoc_lem2 )
∀x y z, SNo x → SNo y → SNo z → (∀u ∈ SNoS_ (SNoLev x ) , u * (y * z ) = (u * y ) * z ) → (∀v ∈ SNoS_ (SNoLev y ) , x * (v * z ) = (x * v ) * z ) → (∀w ∈ SNoS_ (SNoLev z ) , x * (y * w ) = (x * y ) * w ) → (∀u ∈ SNoS_ (SNoLev x ) , ∀v ∈ SNoS_ (SNoLev y ) , u * (v * z ) = (u * v ) * z ) → (∀u ∈ SNoS_ (SNoLev x ) , ∀w ∈ SNoS_ (SNoLev z ) , u * (y * w ) = (u * y ) * w ) → (∀v ∈ SNoS_ (SNoLev y ) , ∀w ∈ SNoS_ (SNoLev z ) , x * (v * w ) = (x * v ) * w ) → (∀u ∈ SNoS_ (SNoLev x ) , ∀v ∈ SNoS_ (SNoLev y ) , ∀w ∈ SNoS_ (SNoLev z ) , u * (v * w ) = (u * v ) * w ) → ∀R, (∀u ∈ R , ∀q : prop , (∀v ∈ SNoL x , ∀w ∈ SNoR (y * z ) , u = v * (y * z ) + x * w + - v * w → q ) → (∀v ∈ SNoR x , ∀w ∈ SNoL (y * z ) , u = v * (y * z ) + x * w + - v * w → q ) → q ) → ∀u ∈ R , (x * y ) * z < u
Proof: Load proof Proof not loaded.
End of Section mul_SNo_assoc_lems
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Theorem. (
pos_mul_SNo_Lt )
∀x y z, SNo x → 0 < x → SNo y → SNo z → y < z → x * y < x * z
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Theorem. (
neg_mul_SNo_Lt )
∀x y z, SNo x → x < 0 → SNo y → SNo z → z < y → x * y < x * z
Proof: Load proof Proof not loaded.
Theorem. (
pos_mul_SNo_Lt' )
∀x y z, SNo x → SNo y → SNo z → 0 < z → x < y → x * z < y * z
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Theorem. (
pos_mul_SNo_Lt2 )
∀x y z w, SNo x → SNo y → SNo z → SNo w → 0 < x → 0 < y → x < z → y < w → x * y < z * w
Proof: Load proof Proof not loaded.
Theorem. (
nonneg_mul_SNo_Le2 )
∀x y z w, SNo x → SNo y → SNo z → SNo w → 0 ≤ x → 0 ≤ y → x ≤ z → y ≤ w → x * y ≤ z * w
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Theorem. (
SNo_foil )
∀x y z w, SNo x → SNo y → SNo z → SNo w → (x + y ) * (z + w ) = x * z + x * w + y * z + y * w
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNoCutP_lem )
∀Lx Rx Ly Ry x y, SNoCutP Lx Rx → SNoCutP Ly Ry → x = SNoCut Lx Rx → y = SNoCut Ly Ry → SNoCutP ({w 0 * y + x * w 1 + - w 0 * w 1 |w ∈ Lx ⨯ Ly } ∪ {z 0 * y + x * z 1 + - z 0 * z 1 |z ∈ Rx ⨯ Ry } ) ({w 0 * y + x * w 1 + - w 0 * w 1 |w ∈ Lx ⨯ Ry } ∪ {z 0 * y + x * z 1 + - z 0 * z 1 |z ∈ Rx ⨯ Ly } ) ∧ x * y = SNoCut ({w 0 * y + x * w 1 + - w 0 * w 1 |w ∈ Lx ⨯ Ly } ∪ {z 0 * y + x * z 1 + - z 0 * z 1 |z ∈ Rx ⨯ Ry } ) ({w 0 * y + x * w 1 + - w 0 * w 1 |w ∈ Lx ⨯ Ry } ∪ {z 0 * y + x * z 1 + - z 0 * z 1 |z ∈ Rx ⨯ Ly } ) ∧ ∀q : prop , (∀LxLy' RxRy' LxRy' RxLy', (∀u ∈ LxLy' , ∀p : prop , (∀w ∈ Lx , ∀w' ∈ Ly , SNo w → SNo w' → w < x → w' < y → u = w * y + x * w' + - w * w' → p ) → p ) → (∀w ∈ Lx , ∀w' ∈ Ly , w * y + x * w' + - w * w' ∈ LxLy' ) → (∀u ∈ RxRy' , ∀p : prop , (∀z ∈ Rx , ∀z' ∈ Ry , SNo z → SNo z' → x < z → y < z' → u = z * y + x * z' + - z * z' → p ) → p ) → (∀z ∈ Rx , ∀z' ∈ Ry , z * y + x * z' + - z * z' ∈ RxRy' ) → (∀u ∈ LxRy' , ∀p : prop , (∀w ∈ Lx , ∀z ∈ Ry , SNo w → SNo z → w < x → y < z → u = w * y + x * z + - w * z → p ) → p ) → (∀w ∈ Lx , ∀z ∈ Ry , w * y + x * z + - w * z ∈ LxRy' ) → (∀u ∈ RxLy' , ∀p : prop , (∀z ∈ Rx , ∀w ∈ Ly , SNo z → SNo w → x < z → w < y → u = z * y + x * w + - z * w → p ) → p ) → (∀z ∈ Rx , ∀w ∈ Ly , z * y + x * w + - z * w ∈ RxLy' ) → SNoCutP (LxLy' ∪ RxRy' ) (LxRy' ∪ RxLy' ) → x * y = SNoCut (LxLy' ∪ RxRy' ) (LxRy' ∪ RxLy' ) → q ) → q
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNoCutP_gen )
∀Lx Rx Ly Ry x y, SNoCutP Lx Rx → SNoCutP Ly Ry → x = SNoCut Lx Rx → y = SNoCut Ly Ry → SNoCutP ({w 0 * y + x * w 1 + - w 0 * w 1 |w ∈ Lx ⨯ Ly } ∪ {z 0 * y + x * z 1 + - z 0 * z 1 |z ∈ Rx ⨯ Ry } ) ({w 0 * y + x * w 1 + - w 0 * w 1 |w ∈ Lx ⨯ Ry } ∪ {z 0 * y + x * z 1 + - z 0 * z 1 |z ∈ Rx ⨯ Ly } )
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNoCut_eq )
∀Lx Rx Ly Ry x y, SNoCutP Lx Rx → SNoCutP Ly Ry → x = SNoCut Lx Rx → y = SNoCut Ly Ry → x * y = SNoCut ({w 0 * y + x * w 1 + - w 0 * w 1 |w ∈ Lx ⨯ Ly } ∪ {z 0 * y + x * z 1 + - z 0 * z 1 |z ∈ Rx ⨯ Ry } ) ({w 0 * y + x * w 1 + - w 0 * w 1 |w ∈ Lx ⨯ Ry } ∪ {z 0 * y + x * z 1 + - z 0 * z 1 |z ∈ Rx ⨯ Ly } )
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNoCut_abs )
∀Lx Rx Ly Ry x y, SNoCutP Lx Rx → SNoCutP Ly Ry → x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀q : prop , (∀LxLy' RxRy' LxRy' RxLy', (∀u ∈ LxLy' , ∀p : prop , (∀w ∈ Lx , ∀w' ∈ Ly , SNo w → SNo w' → w < x → w' < y → u = w * y + x * w' + - w * w' → p ) → p ) → (∀w ∈ Lx , ∀w' ∈ Ly , w * y + x * w' + - w * w' ∈ LxLy' ) → (∀u ∈ RxRy' , ∀p : prop , (∀z ∈ Rx , ∀z' ∈ Ry , SNo z → SNo z' → x < z → y < z' → u = z * y + x * z' + - z * z' → p ) → p ) → (∀z ∈ Rx , ∀z' ∈ Ry , z * y + x * z' + - z * z' ∈ RxRy' ) → (∀u ∈ LxRy' , ∀p : prop , (∀w ∈ Lx , ∀z ∈ Ry , SNo w → SNo z → w < x → y < z → u = w * y + x * z + - w * z → p ) → p ) → (∀w ∈ Lx , ∀z ∈ Ry , w * y + x * z + - w * z ∈ LxRy' ) → (∀u ∈ RxLy' , ∀p : prop , (∀z ∈ Rx , ∀w ∈ Ly , SNo z → SNo w → x < z → w < y → u = z * y + x * w + - z * w → p ) → p ) → (∀z ∈ Rx , ∀w ∈ Ly , z * y + x * w + - z * w ∈ RxLy' ) → SNoCutP (LxLy' ∪ RxRy' ) (LxRy' ∪ RxLy' ) → x * y = SNoCut (LxLy' ∪ RxRy' ) (LxRy' ∪ RxLy' ) → q ) → q
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_SNoCut_SNoL_interpolate )
∀Lx Rx Ly Ry, SNoCutP Lx Rx → SNoCutP Ly Ry → ∀x y, x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀u ∈ SNoL (x * y ) , (∃v ∈ Lx , ∃w ∈ Ly , u + v * w ≤ v * y + x * w ) ∨ (∃v ∈ Rx , ∃w ∈ Ry , u + v * w ≤ v * y + x * w )
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_SNoCut_SNoL_interpolate_impred )
∀Lx Rx Ly Ry, SNoCutP Lx Rx → SNoCutP Ly Ry → ∀x y, x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀u ∈ SNoL (x * y ) , ∀p : prop , (∀v ∈ Lx , ∀w ∈ Ly , u + v * w ≤ v * y + x * w → p ) → (∀v ∈ Rx , ∀w ∈ Ry , u + v * w ≤ v * y + x * w → p ) → p
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_SNoCut_SNoR_interpolate )
∀Lx Rx Ly Ry, SNoCutP Lx Rx → SNoCutP Ly Ry → ∀x y, x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀u ∈ SNoR (x * y ) , (∃v ∈ Lx , ∃w ∈ Ry , v * y + x * w ≤ u + v * w ) ∨ (∃v ∈ Rx , ∃w ∈ Ly , v * y + x * w ≤ u + v * w )
Proof: Load proof Proof not loaded.
Theorem. (
mul_SNo_SNoCut_SNoR_interpolate_impred )
∀Lx Rx Ly Ry, SNoCutP Lx Rx → SNoCutP Ly Ry → ∀x y, x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀u ∈ SNoR (x * y ) , ∀p : prop , (∀v ∈ Lx , ∀w ∈ Ry , v * y + x * w ≤ u + v * w → p ) → (∀v ∈ Rx , ∀w ∈ Ly , v * y + x * w ≤ u + v * w → p ) → p
Proof: Load proof Proof not loaded.
End of Section SurrealMul
Beginning of Section SurrealExp
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Definition. We define
exp_SNo_nat to be
λn m : set ⇒ nat_primrec 1 (λ_ r ⇒ n * r ) m of type
set → set → set .
Notation . We use
^ as an infix operator with priority 342 and which associates to the right corresponding to applying term
exp_SNo_nat .
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Theorem. (
double_eps_1 )
∀x y z, SNo x → SNo y → SNo z → x + x = y + z → x = eps_ 1 * (y + z )
Proof: Load proof Proof not loaded.
Theorem. (
exp_SNo_1_bd )
∀x, SNo x → 1 ≤ x → ∀n, nat_p n → 1 ≤ x ^ n
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
Proof: Load proof Proof not loaded.
End of Section SurrealExp