Beginning of Section TaggedSets
Let tag : setsetλalpha ⇒ SetAdjoin alpha {1}
Notation. We use ' as a postfix operator with priority 100 corresponding to applying term tag.
Theorem. (not_TransSet_Sing1)
¬ TransSet {1}
Proof:
Proof not loaded.
Theorem. (not_ordinal_Sing1)
¬ ordinal {1}
Proof:
Proof not loaded.
Theorem. (tagged_not_ordinal)
∀y, ¬ ordinal (y ')
Proof:
Proof not loaded.
Theorem. (tagged_notin_ordinal)
∀alpha y, ordinal alpha(y ')alpha
Proof:
Proof not loaded.
Theorem. (tagged_eqE_Subq)
∀alpha beta, ordinal alphaalpha ' = beta 'alpha beta
Proof:
Proof not loaded.
Theorem. (tagged_eqE_eq)
∀alpha beta, ordinal alphaordinal betaalpha ' = beta 'alpha = beta
Proof:
Proof not loaded.
Theorem. (tagged_ReplE)
∀alpha beta, ordinal alphaordinal betabeta ' {gamma '|gamma ∈ alpha}beta alpha
Proof:
Proof not loaded.
Theorem. (ordinal_notin_tagged_Repl)
∀alpha Y, ordinal alphaalpha{y '|y ∈ Y}
Proof:
Proof not loaded.
Definition. We define SNoElts_ to be λalpha ⇒ alpha{beta '|beta ∈ alpha} of type setset.
Theorem. (SNoElts_mon)
∀alpha beta, alpha betaSNoElts_ alpha SNoElts_ beta
Proof:
Proof not loaded.
Definition. We define SNo_ to be λalpha x ⇒ x SNoElts_ alpha∀betaalpha, exactly1of2 (beta ' x) (beta x) of type setsetprop.
Definition. We define PSNo to be λalpha p ⇒ {beta ∈ alpha|p beta}{beta '|beta ∈ alpha, ¬ p beta} of type set(setprop)set.
Theorem. (PNoEq_PSNo)
∀alpha, ordinal alpha∀p : setprop, PNoEq_ alpha (λbeta ⇒ beta PSNo alpha p) p
Proof:
Proof not loaded.
Theorem. (SNo_PSNo)
∀alpha, ordinal alpha∀p : setprop, SNo_ alpha (PSNo alpha p)
Proof:
Proof not loaded.
Theorem. (SNo_PSNo_eta_)
∀alpha x, ordinal alphaSNo_ alpha xx = PSNo alpha (λbeta ⇒ beta x)
Proof:
Proof not loaded.
Definition. We define SNo to be λx ⇒ ∃alpha, ordinal alphaSNo_ alpha x of type setprop.
Theorem. (SNo_SNo)
∀alpha, ordinal alpha∀z, SNo_ alpha zSNo z
Proof:
Proof not loaded.
Definition. We define SNoLev to be λx ⇒ Eps_i (λalpha ⇒ ordinal alphaSNo_ alpha x) of type setset.
Theorem. (SNoLev_uniq_Subq)
∀x alpha beta, ordinal alphaordinal betaSNo_ alpha xSNo_ beta xalpha beta
Proof:
Proof not loaded.
Theorem. (SNoLev_uniq)
∀x alpha beta, ordinal alphaordinal betaSNo_ alpha xSNo_ beta xalpha = beta
Proof:
Proof not loaded.
Theorem. (SNoLev_prop)
∀x, SNo xordinal (SNoLev x)SNo_ (SNoLev x) x
Proof:
Proof not loaded.
Theorem. (SNoLev_ordinal)
∀x, SNo xordinal (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNoLev_)
∀x, SNo xSNo_ (SNoLev x) x
Proof:
Proof not loaded.
Theorem. (SNo_PSNo_eta)
∀x, SNo xx = PSNo (SNoLev x) (λbeta ⇒ beta x)
Proof:
Proof not loaded.
Theorem. (SNoLev_PSNo)
∀alpha, ordinal alpha∀p : setprop, SNoLev (PSNo alpha p) = alpha
Proof:
Proof not loaded.
Theorem. (SNo_Subq)
∀x y, SNo xSNo ySNoLev x SNoLev y(∀alphaSNoLev x, alpha xalpha y)x y
Proof:
Proof not loaded.
Definition. We define SNoEq_ to be λalpha x y ⇒ PNoEq_ alpha (λbeta ⇒ beta x) (λbeta ⇒ beta y) of type setsetsetprop.
Theorem. (SNoEq_I)
∀alpha x y, (∀betaalpha, beta xbeta y)SNoEq_ alpha x y
Proof:
Proof not loaded.
Theorem. (SNo_eq)
∀x y, SNo xSNo ySNoLev x = SNoLev ySNoEq_ (SNoLev x) x yx = y
Proof:
Proof not loaded.
End of Section TaggedSets
Definition. We define SNoLt to be λx y ⇒ PNoLt (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y) of type setsetprop.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Definition. We define SNoLe to be λx y ⇒ PNoLe (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y) of type setsetprop.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Theorem. (SNoLtLe)
∀x y, x < yx y
Proof:
Proof not loaded.
Theorem. (SNoLeE)
∀x y, SNo xSNo yx yx < yx = y
Proof:
Proof not loaded.
Theorem. (SNoEq_sym_)
∀alpha x y, SNoEq_ alpha x ySNoEq_ alpha y x
Proof:
Proof not loaded.
Theorem. (SNoEq_tra_)
∀alpha x y z, SNoEq_ alpha x ySNoEq_ alpha y zSNoEq_ alpha x z
Proof:
Proof not loaded.
Theorem. (SNoLtE)
∀x y, SNo xSNo yx < y∀p : prop, (∀z, SNo zSNoLev z SNoLev xSNoLev ySNoEq_ (SNoLev z) z xSNoEq_ (SNoLev z) z yx < zz < ySNoLev zxSNoLev z yp)(SNoLev x SNoLev ySNoEq_ (SNoLev x) x ySNoLev x yp)(SNoLev y SNoLev xSNoEq_ (SNoLev y) x ySNoLev yxp)p
Proof:
Proof not loaded.
Theorem. (SNoLtI2)
∀x y, SNoLev x SNoLev ySNoEq_ (SNoLev x) x ySNoLev x yx < y
Proof:
Proof not loaded.
Theorem. (SNoLtI3)
∀x y, SNoLev y SNoLev xSNoEq_ (SNoLev y) x ySNoLev yxx < y
Proof:
Proof not loaded.
Theorem. (SNoLt_irref)
∀x, ¬ SNoLt x x
Proof:
Proof not loaded.
Theorem. (SNoLt_trichotomy_or)
∀x y, SNo xSNo yx < yx = yy < x
Proof:
Proof not loaded.
Theorem. (SNoLt_trichotomy_or_impred)
∀x y, SNo xSNo y∀p : prop, (x < yp)(x = yp)(y < xp)p
Proof:
Proof not loaded.
Theorem. (SNoLt_tra)
∀x y z, SNo xSNo ySNo zx < yy < zx < z
Proof:
Proof not loaded.
Theorem. (SNoLe_ref)
∀x, SNoLe x x
Proof:
Proof not loaded.
Theorem. (SNoLe_antisym)
∀x y, SNo xSNo yx yy xx = y
Proof:
Proof not loaded.
Theorem. (SNoLtLe_tra)
∀x y z, SNo xSNo ySNo zx < yy zx < z
Proof:
Proof not loaded.
Theorem. (SNoLeLt_tra)
∀x y z, SNo xSNo ySNo zx yy < zx < z
Proof:
Proof not loaded.
Theorem. (SNoLe_tra)
∀x y z, SNo xSNo ySNo zx yy zx z
Proof:
Proof not loaded.
Theorem. (SNoLtLe_or)
∀x y, SNo xSNo yx < yy x
Proof:
Proof not loaded.
Theorem. (SNoLt_PSNo_PNoLt)
∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPSNo alpha p < PSNo beta qPNoLt alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLt_SNoLt_PSNo)
∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNoLt alpha p beta qPSNo alpha p < PSNo beta q
Proof:
Proof not loaded.
Definition. We define SNoCut to be λL R ⇒ PSNo (PNo_bd (λalpha p ⇒ ordinal alphaPSNo alpha p L) (λalpha p ⇒ ordinal alphaPSNo alpha p R)) (PNo_pred (λalpha p ⇒ ordinal alphaPSNo alpha p L) (λalpha p ⇒ ordinal alphaPSNo alpha p R)) of type setsetset.
Definition. We define SNoCutP to be λL R ⇒ (∀xL, SNo x)(∀yR, SNo y)(∀xL, ∀yR, x < y) of type setsetprop.
Theorem. (SNoCutP_SNoCut)
∀L R, SNoCutP L RSNo (SNoCut L R)SNoLev (SNoCut L R) ordsucc ((x ∈ Lordsucc (SNoLev x))(y ∈ Rordsucc (SNoLev y)))(∀xL, x < SNoCut L R)(∀yR, SNoCut L R < y)(∀z, SNo z(∀xL, x < z)(∀yR, z < y)SNoLev (SNoCut L R) SNoLev zSNoEq_ (SNoLev (SNoCut L R)) (SNoCut L R) z)
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_impred)
∀L R, SNoCutP L R∀p : prop, (SNo (SNoCut L R)SNoLev (SNoCut L R) ordsucc ((x ∈ Lordsucc (SNoLev x))(y ∈ Rordsucc (SNoLev y)))(∀xL, x < SNoCut L R)(∀yR, SNoCut L R < y)(∀z, SNo z(∀xL, x < z)(∀yR, z < y)SNoLev (SNoCut L R) SNoLev zSNoEq_ (SNoLev (SNoCut L R)) (SNoCut L R) z)p)p
Proof:
Proof not loaded.
Theorem. (SNoCutP_L_0)
∀L, (∀xL, SNo x)SNoCutP L 0
Proof:
Proof not loaded.
Theorem. (SNoCutP_0_R)
∀R, (∀xR, SNo x)SNoCutP 0 R
Proof:
Proof not loaded.
Theorem. (SNoCutP_0_0)
Proof:
Proof not loaded.
Definition. We define SNoS_ to be λalpha ⇒ {x ∈ 𝒫 (SNoElts_ alpha)|∃beta ∈ alpha, SNo_ beta x} of type setset.
Theorem. (SNoS_E)
∀alpha, ordinal alpha∀xSNoS_ alpha, ∃beta ∈ alpha, SNo_ beta x
Proof:
Proof not loaded.
Beginning of Section TaggedSets2
Let tag : setsetλalpha ⇒ SetAdjoin alpha {1}
Notation. We use ' as a postfix operator with priority 100 corresponding to applying term tag.
Theorem. (SNoS_I)
∀alpha, ordinal alpha∀x, ∀betaalpha, SNo_ beta xx SNoS_ alpha
Proof:
Proof not loaded.
Theorem. (SNoS_I2)
∀x y, SNo xSNo ySNoLev x SNoLev yx SNoS_ (SNoLev y)
Proof:
Proof not loaded.
Theorem. (SNoS_Subq)
∀alpha beta, ordinal alphaordinal betaalpha betaSNoS_ alpha SNoS_ beta
Proof:
Proof not loaded.
Theorem. (SNoLev_uniq2)
∀alpha, ordinal alpha∀x, SNo_ alpha xSNoLev x = alpha
Proof:
Proof not loaded.
Theorem. (SNoS_E2)
∀alpha, ordinal alpha∀xSNoS_ alpha, ∀p : prop, (SNoLev x alphaordinal (SNoLev x)SNo xSNo_ (SNoLev x) xp)p
Proof:
Proof not loaded.
Theorem. (SNoS_In_neq)
∀w, SNo w∀xSNoS_ (SNoLev w), xw
Proof:
Proof not loaded.
Theorem. (SNoS_SNoLev)
∀z, SNo zz SNoS_ (ordsucc (SNoLev z))
Proof:
Proof not loaded.
Definition. We define SNoL to be λz ⇒ {x ∈ SNoS_ (SNoLev z)|x < z} of type setset.
Definition. We define SNoR to be λz ⇒ {y ∈ SNoS_ (SNoLev z)|z < y} of type setset.
Theorem. (SNoCutP_SNoL_SNoR)
∀z, SNo zSNoCutP (SNoL z) (SNoR z)
Proof:
Proof not loaded.
Theorem. (SNoL_E)
∀x, SNo x∀wSNoL x, ∀p : prop, (SNo wSNoLev w SNoLev xw < xp)p
Proof:
Proof not loaded.
Theorem. (SNoR_E)
∀x, SNo x∀zSNoR x, ∀p : prop, (SNo zSNoLev z SNoLev xx < zp)p
Proof:
Proof not loaded.
Theorem. (SNoL_SNoS_)
∀z, SNoL z SNoS_ (SNoLev z)
Proof:
Proof not loaded.
Theorem. (SNoR_SNoS_)
∀z, SNoR z SNoS_ (SNoLev z)
Proof:
Proof not loaded.
Theorem. (SNoL_SNoS)
∀x, SNo x∀wSNoL x, w SNoS_ (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNoR_SNoS)
∀x, SNo x∀zSNoR x, z SNoS_ (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNoL_I)
∀z, SNo z∀x, SNo xSNoLev x SNoLev zx < zx SNoL z
Proof:
Proof not loaded.
Theorem. (SNoR_I)
∀z, SNo z∀y, SNo ySNoLev y SNoLev zz < yy SNoR z
Proof:
Proof not loaded.
Theorem. (SNo_eta)
∀z, SNo zz = SNoCut (SNoL z) (SNoR z)
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNo_SNoCut)
∀L R, SNoCutP L RSNo (SNoCut L R)
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_L)
∀L R, SNoCutP L R∀xL, x < SNoCut L R
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_R)
∀L R, SNoCutP L R∀yR, SNoCut L R < y
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_fst)
∀L R, SNoCutP L R∀z, SNo z(∀xL, x < z)(∀yR, z < y)SNoLev (SNoCut L R) SNoLev zSNoEq_ (SNoLev (SNoCut L R)) (SNoCut L R) z
Proof:
Proof not loaded.
Theorem. (SNoCut_Le)
∀L1 R1 L2 R2, SNoCutP L1 R1SNoCutP L2 R2(∀wL1, w < SNoCut L2 R2)(∀zR2, SNoCut L1 R1 < z)SNoCut L1 R1 SNoCut L2 R2
Proof:
Proof not loaded.
Theorem. (SNoCut_ext)
∀L1 R1 L2 R2, SNoCutP L1 R1SNoCutP L2 R2(∀wL1, w < SNoCut L2 R2)(∀zR1, SNoCut L2 R2 < z)(∀wL2, w < SNoCut L1 R1)(∀zR2, SNoCut L1 R1 < z)SNoCut L1 R1 = SNoCut L2 R2
Proof:
Proof not loaded.
Theorem. (SNoLt_SNoL_or_SNoR_impred)
∀x y, SNo xSNo yx < y∀p : prop, (∀zSNoL y, z SNoR xp)(x SNoL yp)(y SNoR xp)p
Proof:
Proof not loaded.
Theorem. (SNoL_or_SNoR_impred)
∀x y, SNo xSNo y∀p : prop, (x = yp)(∀zSNoL y, z SNoR xp)(x SNoL yp)(y SNoR xp)(∀zSNoR y, z SNoL xp)(x SNoR yp)(y SNoL xp)p
Proof:
Proof not loaded.
Theorem. (SNoL_SNoCutP_ex)
∀L R, SNoCutP L R∀wSNoL (SNoCut L R), ∃w' ∈ L, w w'
Proof:
Proof not loaded.
Theorem. (SNoR_SNoCutP_ex)
∀L R, SNoCutP L R∀zSNoR (SNoCut L R), ∃z' ∈ R, z' z
Proof:
Proof not loaded.
Theorem. (ordinal_SNo_)
∀alpha, ordinal alphaSNo_ alpha alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNo)
∀alpha, ordinal alphaSNo alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoLev)
∀alpha, ordinal alphaSNoLev alpha = alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoLev_max)
∀alpha, ordinal alpha∀z, SNo zSNoLev z alphaz < alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoL)
∀alpha, ordinal alphaSNoL alpha = SNoS_ alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoR)
∀alpha, ordinal alphaSNoR alpha = Empty
Proof:
Proof not loaded.
Theorem. (nat_p_SNo)
∀n, nat_p nSNo n
Proof:
Proof not loaded.
Theorem. (omega_SNo)
∀nω, SNo n
Proof:
Proof not loaded.
Theorem. (omega_SNoS_omega)
ω SNoS_ ω
Proof:
Proof not loaded.
Theorem. (ordinal_In_SNoLt)
∀alpha, ordinal alpha∀betaalpha, beta < alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoLev_max_2)
∀alpha, ordinal alpha∀z, SNo zSNoLev z ordsucc alphaz alpha
Proof:
Proof not loaded.
Theorem. (ordinal_Subq_SNoLe)
∀alpha beta, ordinal alphaordinal betaalpha betaalpha beta
Proof:
Proof not loaded.
Theorem. (ordinal_SNoLt_In)
∀alpha beta, ordinal alphaordinal betaalpha < betaalpha beta
Proof:
Proof not loaded.
Theorem. (omega_nonneg)
∀mω, 0 m
Proof:
Proof not loaded.
Theorem. (SNo_0)
SNo 0
Proof:
Proof not loaded.
Theorem. (SNo_1)
SNo 1
Proof:
Proof not loaded.
Theorem. (SNo_2)
SNo 2
Proof:
Proof not loaded.
Theorem. (SNoLev_0)
SNoLev 0 = 0
Proof:
Proof not loaded.
Theorem. (SNoCut_0_0)
SNoCut 0 0 = 0
Proof:
Proof not loaded.
Theorem. (SNoL_0)
SNoL 0 = 0
Proof:
Proof not loaded.
Theorem. (SNoR_0)
SNoR 0 = 0
Proof:
Proof not loaded.
Theorem. (SNoL_1)
SNoL 1 = 1
Proof:
Proof not loaded.
Theorem. (SNoR_1)
SNoR 1 = 0
Proof:
Proof not loaded.
Theorem. (SNo_max_SNoLev)
∀x, SNo x(∀ySNoS_ (SNoLev x), y < x)SNoLev x = x
Proof:
Proof not loaded.
Theorem. (SNo_max_ordinal)
∀x, SNo x(∀ySNoS_ (SNoLev x), y < x)ordinal x
Proof:
Proof not loaded.
Theorem. (pos_low_eq_one)
∀x, SNo x0 < xSNoLev x 1x = 1
Proof:
Proof not loaded.
Definition. We define SNo_extend0 to be λx ⇒ PSNo (ordsucc (SNoLev x)) (λdelta ⇒ delta xdeltaSNoLev x) of type setset.
Definition. We define SNo_extend1 to be λx ⇒ PSNo (ordsucc (SNoLev x)) (λdelta ⇒ delta xdelta = SNoLev x) of type setset.
Theorem. (SNo_extend0_SNo_)
∀x, SNo xSNo_ (ordsucc (SNoLev x)) (SNo_extend0 x)
Proof:
Proof not loaded.
Theorem. (SNo_extend1_SNo_)
∀x, SNo xSNo_ (ordsucc (SNoLev x)) (SNo_extend1 x)
Proof:
Proof not loaded.
Theorem. (SNo_extend0_SNo)
∀x, SNo xSNo (SNo_extend0 x)
Proof:
Proof not loaded.
Theorem. (SNo_extend1_SNo)
∀x, SNo xSNo (SNo_extend1 x)
Proof:
Proof not loaded.
Theorem. (SNo_extend0_SNoLev)
∀x, SNo xSNoLev (SNo_extend0 x) = ordsucc (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNo_extend1_SNoLev)
∀x, SNo xSNoLev (SNo_extend1 x) = ordsucc (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNo_extend0_nIn)
∀x, SNo xSNoLev xSNo_extend0 x
Proof:
Proof not loaded.
Theorem. (SNo_extend1_In)
∀x, SNo xSNoLev x SNo_extend1 x
Proof:
Proof not loaded.
Theorem. (SNo_extend0_SNoEq)
∀x, SNo xSNoEq_ (SNoLev x) (SNo_extend0 x) x
Proof:
Proof not loaded.
Theorem. (SNo_extend1_SNoEq)
∀x, SNo xSNoEq_ (SNoLev x) (SNo_extend1 x) x
Proof:
Proof not loaded.
Theorem. (SNoLev_0_eq_0)
∀x, SNo xSNoLev x = 0x = 0
Proof:
Proof not loaded.
Theorem. (SNo_0_eq_0)
∀q, SNo_ 0 qq = 0
Proof:
Proof not loaded.
Definition. We define eps_ to be λn ⇒ {0}{(ordsucc m) '|m ∈ n} of type setset.
Theorem. (eps_ordinal_In_eq_0)
∀n alpha, ordinal alphaalpha eps_ nalpha = 0
Proof:
Proof not loaded.
Theorem. (eps_0_1)
eps_ 0 = 1
Proof:
Proof not loaded.
Theorem. (SNo__eps_)
∀nω, SNo_ (ordsucc n) (eps_ n)
Proof:
Proof not loaded.
Theorem. (SNo_eps_)
∀nω, SNo (eps_ n)
Proof:
Proof not loaded.
Theorem. (SNo_eps_1)
SNo (eps_ 1)
Proof:
Proof not loaded.
Theorem. (SNoLev_eps_)
∀nω, SNoLev (eps_ n) = ordsucc n
Proof:
Proof not loaded.
Theorem. (SNo_eps_SNoS_omega)
∀nω, eps_ n SNoS_ ω
Proof:
Proof not loaded.
Theorem. (SNo_eps_decr)
∀nω, ∀mn, eps_ n < eps_ m
Proof:
Proof not loaded.
Theorem. (SNo_eps_pos)
∀nω, 0 < eps_ n
Proof:
Proof not loaded.
Theorem. (SNo_pos_eps_Lt)
∀n, nat_p n∀xSNoS_ (ordsucc n), 0 < xeps_ n < x
Proof:
Proof not loaded.
Theorem. (SNo_pos_eps_Le)
∀n, nat_p n∀xSNoS_ (ordsucc (ordsucc n)), 0 < xeps_ n x
Proof:
Proof not loaded.
Theorem. (eps_SNo_eq)
∀n, nat_p n∀xSNoS_ (ordsucc n), 0 < xSNoEq_ (SNoLev x) (eps_ n) x∃m ∈ n, x = eps_ m
Proof:
Proof not loaded.
Theorem. (eps_SNoCutP)
∀nω, SNoCutP {0} {eps_ m|m ∈ n}
Proof:
Proof not loaded.
Theorem. (eps_SNoCut)
∀nω, eps_ n = SNoCut {0} {eps_ m|m ∈ n}
Proof:
Proof not loaded.
End of Section TaggedSets2
Theorem. (SNo_etaE)
∀z, SNo z∀p : prop, (∀L R, SNoCutP L R(∀xL, SNoLev x SNoLev z)(∀yR, SNoLev y SNoLev z)z = SNoCut L Rp)p
Proof:
Proof not loaded.
Theorem. (SNo_ind)
∀P : setprop, (∀L R, SNoCutP L R(∀xL, P x)(∀yR, P y)P (SNoCut L R))∀z, SNo zP z
Proof:
Proof not loaded.
Beginning of Section SurrealRecI
Variable F : set(setset)set
Let default : setEps_i (λ_ ⇒ True)
Let G : set(setsetset)setsetλalpha g ⇒ If_ii (ordinal alpha) (λz : setif z SNoS_ (ordsucc alpha) then F z (λw ⇒ g (SNoLev w) w) else default) (λz : setdefault)
Definition. We define SNo_rec_i to be λz ⇒ In_rec_ii G (SNoLev z) z of type setset.
Hypothesis Fr : ∀z, SNo z∀g h : setset, (∀wSNoS_ (SNoLev z), g w = h w)F z g = F z h
Theorem. (SNo_rec_i_eq)
∀z, SNo zSNo_rec_i z = F z SNo_rec_i
Proof:
Proof not loaded.
End of Section SurrealRecI
Beginning of Section SurrealRecII
Variable F : set(set(setset))(setset)
Let default : (setset)Descr_ii (λ_ ⇒ True)
Let G : set(setset(setset))set(setset)λalpha g ⇒ If_iii (ordinal alpha) (λz : setIf_ii (z SNoS_ (ordsucc alpha)) (F z (λw ⇒ g (SNoLev w) w)) default) (λz : setdefault)
Definition. We define SNo_rec_ii to be λz ⇒ In_rec_iii G (SNoLev z) z of type set(setset).
Hypothesis Fr : ∀z, SNo z∀g h : set(setset), (∀wSNoS_ (SNoLev z), g w = h w)F z g = F z h
Theorem. (SNo_rec_ii_eq)
∀z, SNo zSNo_rec_ii z = F z SNo_rec_ii
Proof:
Proof not loaded.
End of Section SurrealRecII
Beginning of Section SurrealRec2
Variable F : setset(setsetset)set
Let G : set(setsetset)set(setset)setλw f z g ⇒ F w z (λx y ⇒ if x = w then g y else f x y)
Let H : set(setsetset)setsetλw f z ⇒ if SNo z then SNo_rec_i (G w f) z else Empty
Definition. We define SNo_rec2 to be SNo_rec_ii H of type setsetset.
Hypothesis Fr : ∀w, SNo w∀z, SNo z∀g h : setsetset, (∀xSNoS_ (SNoLev w), ∀y, SNo yg x y = h x y)(∀ySNoS_ (SNoLev z), g w y = h w y)F w z g = F w z h
Theorem. (SNo_rec2_G_prop)
∀w, SNo w∀f k : setsetset, (∀xSNoS_ (SNoLev w), f x = k x)∀z, SNo z∀g h : setset, (∀uSNoS_ (SNoLev z), g u = h u)G w f z g = G w k z h
Proof:
Proof not loaded.
Theorem. (SNo_rec2_eq_1)
∀w, SNo w∀f : setsetset, ∀z, SNo zSNo_rec_i (G w f) z = G w f z (SNo_rec_i (G w f))
Proof:
Proof not loaded.
Theorem. (SNo_rec2_eq)
∀w, SNo w∀z, SNo zSNo_rec2 w z = F w z SNo_rec2
Proof:
Proof not loaded.
End of Section SurrealRec2
Theorem. (SNo_ordinal_ind)
∀P : setprop, (∀alpha, ordinal alpha∀xSNoS_ alpha, P x)(∀x, SNo xP x)
Proof:
Proof not loaded.
Theorem. (SNo_ordinal_ind2)
∀P : setsetprop, (∀alpha, ordinal alpha∀beta, ordinal beta∀xSNoS_ alpha, ∀ySNoS_ beta, P x y)(∀x y, SNo xSNo yP x y)
Proof:
Proof not loaded.
Theorem. (SNo_ordinal_ind3)
∀P : setsetsetprop, (∀alpha, ordinal alpha∀beta, ordinal beta∀gamma, ordinal gamma∀xSNoS_ alpha, ∀ySNoS_ beta, ∀zSNoS_ gamma, P x y z)(∀x y z, SNo xSNo ySNo zP x y z)
Proof:
Proof not loaded.
Theorem. (SNoLev_ind)
∀P : setprop, (∀x, SNo x(∀wSNoS_ (SNoLev x), P w)P x)(∀x, SNo xP x)
Proof:
Proof not loaded.
Theorem. (SNoLev_ind2)
∀P : setsetprop, (∀x y, SNo xSNo y(∀wSNoS_ (SNoLev x), P w y)(∀zSNoS_ (SNoLev y), P x z)(∀wSNoS_ (SNoLev x), ∀zSNoS_ (SNoLev y), P w z)P x y)∀x y, SNo xSNo yP x y
Proof:
Proof not loaded.
Theorem. (SNoLev_ind3)
∀P : setsetsetprop, (∀x y z, SNo xSNo ySNo z(∀uSNoS_ (SNoLev x), P u y z)(∀vSNoS_ (SNoLev y), P x v z)(∀wSNoS_ (SNoLev z), P x y w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), P u v z)(∀uSNoS_ (SNoLev x), ∀wSNoS_ (SNoLev z), P u y w)(∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), P x v w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), P u v w)P x y z)∀x y z, SNo xSNo ySNo zP x y z
Proof:
Proof not loaded.
Theorem. (SNo_omega)
SNo ω
Proof:
Proof not loaded.
Theorem. (SNoLt_0_1)
0 < 1
Proof:
Proof not loaded.
Theorem. (SNoLt_0_2)
0 < 2
Proof:
Proof not loaded.
Theorem. (SNoLt_1_2)
1 < 2
Proof:
Proof not loaded.
Theorem. (restr_SNo_)
∀x, SNo x∀alphaSNoLev x, SNo_ alpha (xSNoElts_ alpha)
Proof:
Proof not loaded.
Theorem. (restr_SNo)
∀x, SNo x∀alphaSNoLev x, SNo (xSNoElts_ alpha)
Proof:
Proof not loaded.
Theorem. (restr_SNoLev)
∀x, SNo x∀alphaSNoLev x, SNoLev (xSNoElts_ alpha) = alpha
Proof:
Proof not loaded.
Theorem. (restr_SNoEq)
∀x, SNo x∀alphaSNoLev x, SNoEq_ alpha (xSNoElts_ alpha) x
Proof:
Proof not loaded.
Theorem. (SNo_extend0_restr_eq)
∀x, SNo xx = SNo_extend0 xSNoElts_ (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNo_extend1_restr_eq)
∀x, SNo xx = SNo_extend1 xSNoElts_ (SNoLev x)
Proof:
Proof not loaded.