In Proofgold the corresponding term root is 11b6ed... and proposition id is 6196d9...
Proof: Proof not loaded.
Definition. We define SNoCut to be λL R ⇒ PSNo(PNo_bd(λalpha p ⇒ ordinalalpha ∧ PSNoalphap∈L)(λalpha p ⇒ ordinalalpha ∧ PSNoalphap∈R))(PNo_pred(λalpha p ⇒ ordinalalpha ∧ PSNoalphap∈L)(λalpha p ⇒ ordinalalpha ∧ PSNoalphap∈R)) of type set → set → set.
In Proofgold the corresponding term root is ec849e... and object id is 295bc4...
Definition. We define SNoCutP to be λL R ⇒ (∀x ∈ L, SNox) ∧ (∀y ∈ R, SNoy) ∧ (∀x ∈ L, ∀y ∈ R, x<y) of type set → set → prop.
In Proofgold the corresponding term root is c083d8... and object id is 775127...
In Proofgold the corresponding term root is 5b4c39... and proposition id is 94cbe6...
Proof: Proof not loaded.
Beginning of Section SurrealRecI
Variable F : set → (set → set) → set
Letdefault : set ≝ Eps_i(λ_ ⇒ True)
LetG : set → (set → set → set) → set → set ≝ λalpha g ⇒ If_ii(ordinalalpha)(λz : set ⇒ ifz∈SNoS_(ordsuccalpha)thenFz(λw ⇒ g(SNoLevw)w)elsedefault)(λz : set ⇒ default)
Definition. We define SNo_rec_i to be λz ⇒ In_rec_iiG(SNoLevz)z of type set → set.
In Proofgold the corresponding term root is be45df... and object id is 230ba8...