Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using Sigma.
Notation. We use as an infix operator with priority 440 and which associates to the left corresponding to applying term setprod.
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using Pi.
Notation. We use :^: as an infix operator with priority 430 and which associates to the left corresponding to applying term setexp.
Definition. We define DescrR_i_io_1 to be λR ⇒ Eps_i (λx ⇒ (∃y : setprop, R x y)(∀y z : setprop, R x yR x zy = z)) of type (set(setprop)prop)set.
Definition. We define DescrR_i_io_2 to be λR ⇒ Descr_Vo1 (λy ⇒ R (DescrR_i_io_1 R) y) of type (set(setprop)prop)setprop.
Theorem. (DescrR_i_io_12)
∀R : set(setprop)prop, (∃x, (∃y : setprop, R x y)(∀y z : setprop, R x yR x zy = z))R (DescrR_i_io_1 R) (DescrR_i_io_2 R)
Proof:
Proof not loaded.
Definition. We define PNoEq_ to be λalpha p q ⇒ ∀betaalpha, p betaq beta of type set(setprop)(setprop)prop.
Theorem. (PNoEq_ref_)
∀alpha, ∀p : setprop, PNoEq_ alpha p p
Proof:
Proof not loaded.
Theorem. (PNoEq_sym_)
∀alpha, ∀p q : setprop, PNoEq_ alpha p qPNoEq_ alpha q p
Proof:
Proof not loaded.
Theorem. (PNoEq_tra_)
∀alpha, ∀p q r : setprop, PNoEq_ alpha p qPNoEq_ alpha q rPNoEq_ alpha p r
Proof:
Proof not loaded.
Theorem. (PNoEq_antimon_)
∀p q : setprop, ∀alpha, ordinal alpha∀betaalpha, PNoEq_ alpha p qPNoEq_ beta p q
Proof:
Proof not loaded.
Definition. We define PNoLt_ to be λalpha p q ⇒ ∃beta ∈ alpha, PNoEq_ beta p q¬ p betaq beta of type set(setprop)(setprop)prop.
Theorem. (PNoLt_E_)
∀alpha, ∀p q : setprop, PNoLt_ alpha p q∀R : prop, (∀beta, beta alphaPNoEq_ beta p q¬ p betaq betaR)R
Proof:
Proof not loaded.
Theorem. (PNoLt_irref_)
∀alpha, ∀p : setprop, ¬ PNoLt_ alpha p p
Proof:
Proof not loaded.
Theorem. (PNoLt_mon_)
∀p q : setprop, ∀alpha, ordinal alpha∀betaalpha, PNoLt_ beta p qPNoLt_ alpha p q
Proof:
Proof not loaded.
Theorem. (PNoLt_trichotomy_or_)
∀p q : setprop, ∀alpha, ordinal alphaPNoLt_ alpha p qPNoEq_ alpha p qPNoLt_ alpha q p
Proof:
Proof not loaded.
Theorem. (PNoLt_tra_)
∀alpha, ordinal alpha∀p q r : setprop, PNoLt_ alpha p qPNoLt_ alpha q rPNoLt_ alpha p r
Proof:
Proof not loaded.
Definition. We define PNoLt to be λalpha p beta q ⇒ PNoLt_ (alphabeta) p qalpha betaPNoEq_ alpha p qq alphabeta alphaPNoEq_ beta p q¬ p beta of type set(setprop)set(setprop)prop.
Theorem. (PNoLtI1)
∀alpha beta, ∀p q : setprop, PNoLt_ (alphabeta) p qPNoLt alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLtI2)
∀alpha beta, ∀p q : setprop, alpha betaPNoEq_ alpha p qq alphaPNoLt alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLtI3)
∀alpha beta, ∀p q : setprop, beta alphaPNoEq_ beta p q¬ p betaPNoLt alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLtE)
∀alpha beta, ∀p q : setprop, PNoLt alpha p beta q∀R : prop, (PNoLt_ (alphabeta) p qR)(alpha betaPNoEq_ alpha p qq alphaR)(beta alphaPNoEq_ beta p q¬ p betaR)R
Proof:
Proof not loaded.
Theorem. (PNoLt_irref)
∀alpha, ∀p : setprop, ¬ PNoLt alpha p alpha p
Proof:
Proof not loaded.
Theorem. (PNoLt_trichotomy_or)
∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNoLt alpha p beta qalpha = betaPNoEq_ alpha p qPNoLt beta q alpha p
Proof:
Proof not loaded.
Theorem. (PNoLtEq_tra)
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoLt alpha p beta qPNoEq_ beta q rPNoLt alpha p beta r
Proof:
Proof not loaded.
Theorem. (PNoEqLt_tra)
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoEq_ alpha p qPNoLt alpha q beta rPNoLt alpha p beta r
Proof:
Proof not loaded.
Theorem. (PNoLt_tra)
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLt alpha p beta qPNoLt beta q gamma rPNoLt alpha p gamma r
Proof:
Proof not loaded.
Definition. We define PNoLe to be λalpha p beta q ⇒ PNoLt alpha p beta qalpha = betaPNoEq_ alpha p q of type set(setprop)set(setprop)prop.
Theorem. (PNoLeI1)
∀alpha beta, ∀p q : setprop, PNoLt alpha p beta qPNoLe alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLeI2)
∀alpha, ∀p q : setprop, PNoEq_ alpha p qPNoLe alpha p alpha q
Proof:
Proof not loaded.
Theorem. (PNoLe_ref)
∀alpha, ∀p : setprop, PNoLe alpha p alpha p
Proof:
Proof not loaded.
Theorem. (PNoLe_antisym)
∀alpha beta, ordinal alphaordinal beta∀p q : setprop, PNoLe alpha p beta qPNoLe beta q alpha palpha = betaPNoEq_ alpha p q
Proof:
Proof not loaded.
Theorem. (PNoLtLe_tra)
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLt alpha p beta qPNoLe beta q gamma rPNoLt alpha p gamma r
Proof:
Proof not loaded.
Theorem. (PNoLeLt_tra)
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLe alpha p beta qPNoLt beta q gamma rPNoLt alpha p gamma r
Proof:
Proof not loaded.
Theorem. (PNoEqLe_tra)
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoEq_ alpha p qPNoLe alpha q beta rPNoLe alpha p beta r
Proof:
Proof not loaded.
Theorem. (PNoLe_tra)
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLe alpha p beta qPNoLe beta q gamma rPNoLe alpha p gamma r
Proof:
Proof not loaded.
Definition. We define PNo_downc to be λL alpha p ⇒ ∃beta, ordinal beta∃q : setprop, L beta qPNoLe alpha p beta q of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_upc to be λR alpha p ⇒ ∃beta, ordinal beta∃q : setprop, R beta qPNoLe beta q alpha p of type (set(setprop)prop)set(setprop)prop.
Theorem. (PNoLe_downc)
∀L : set(setprop)prop, ∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNo_downc L alpha pPNoLe beta q alpha pPNo_downc L beta q
Proof:
Proof not loaded.
Theorem. (PNo_downc_ref)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, L alpha pPNo_downc L alpha p
Proof:
Proof not loaded.
Theorem. (PNo_upc_ref)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, R alpha pPNo_upc R alpha p
Proof:
Proof not loaded.
Theorem. (PNoLe_upc)
∀R : set(setprop)prop, ∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNo_upc R alpha pPNoLe alpha p beta qPNo_upc R beta q
Proof:
Proof not loaded.
Definition. We define PNoLt_pwise to be λL R ⇒ ∀gamma, ordinal gamma∀p : setprop, L gamma p∀delta, ordinal delta∀q : setprop, R delta qPNoLt gamma p delta q of type (set(setprop)prop)(set(setprop)prop)prop.
Theorem. (PNoLt_pwise_downc_upc)
∀L R : set(setprop)prop, PNoLt_pwise L RPNoLt_pwise (PNo_downc L) (PNo_upc R)
Proof:
Proof not loaded.
Definition. We define PNo_rel_strict_upperbd to be λL alpha p ⇒ ∀betaalpha, ∀q : setprop, PNo_downc L beta qPNoLt beta q alpha p of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_rel_strict_lowerbd to be λR alpha p ⇒ ∀betaalpha, ∀q : setprop, PNo_upc R beta qPNoLt alpha p beta q of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_rel_strict_imv to be λL R alpha p ⇒ PNo_rel_strict_upperbd L alpha pPNo_rel_strict_lowerbd R alpha p of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Theorem. (PNoEq_rel_strict_upperbd)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_rel_strict_upperbd L alpha pPNo_rel_strict_upperbd L alpha q
Proof:
Proof not loaded.
Theorem. (PNo_rel_strict_upperbd_antimon)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, ∀betaalpha, PNo_rel_strict_upperbd L alpha pPNo_rel_strict_upperbd L beta p
Proof:
Proof not loaded.
Theorem. (PNoEq_rel_strict_lowerbd)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_rel_strict_lowerbd R alpha pPNo_rel_strict_lowerbd R alpha q
Proof:
Proof not loaded.
Theorem. (PNo_rel_strict_lowerbd_antimon)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, ∀betaalpha, PNo_rel_strict_lowerbd R alpha pPNo_rel_strict_lowerbd R beta p
Proof:
Proof not loaded.
Theorem. (PNoEq_rel_strict_imv)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_rel_strict_imv L R alpha pPNo_rel_strict_imv L R alpha q
Proof:
Proof not loaded.
Theorem. (PNo_rel_strict_imv_antimon)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, ∀betaalpha, PNo_rel_strict_imv L R alpha pPNo_rel_strict_imv L R beta p
Proof:
Proof not loaded.
Definition. We define PNo_rel_strict_uniq_imv to be λL R alpha p ⇒ PNo_rel_strict_imv L R alpha p∀q : setprop, PNo_rel_strict_imv L R alpha qPNoEq_ alpha p q of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Definition. We define PNo_rel_strict_split_imv to be λL R alpha p ⇒ PNo_rel_strict_imv L R (ordsucc alpha) (λdelta ⇒ p deltadeltaalpha)PNo_rel_strict_imv L R (ordsucc alpha) (λdelta ⇒ p deltadelta = alpha) of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Theorem. (PNo_extend0_eq)
∀alpha, ∀p : setprop, PNoEq_ alpha p (λdelta ⇒ p deltadeltaalpha)
Proof:
Proof not loaded.
Theorem. (PNo_extend1_eq)
∀alpha, ∀p : setprop, PNoEq_ alpha p (λdelta ⇒ p deltadelta = alpha)
Proof:
Proof not loaded.
Theorem. (PNo_rel_imv_ex)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alpha(∃p : setprop, PNo_rel_strict_uniq_imv L R alpha p)(∃tau ∈ alpha, ∃p : setprop, PNo_rel_strict_split_imv L R tau p)
Proof:
Proof not loaded.
Definition. We define PNo_lenbdd to be λalpha L ⇒ ∀beta, ∀p : setprop, L beta pbeta alpha of type set(set(setprop)prop)prop.
Theorem. (PNo_lenbdd_strict_imv_extend0)
∀L R : set(setprop)prop, ∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∀p : setprop, PNo_rel_strict_imv L R alpha pPNo_rel_strict_imv L R (ordsucc alpha) (λdelta ⇒ p deltadeltaalpha)
Proof:
Proof not loaded.
Theorem. (PNo_lenbdd_strict_imv_extend1)
∀L R : set(setprop)prop, ∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∀p : setprop, PNo_rel_strict_imv L R alpha pPNo_rel_strict_imv L R (ordsucc alpha) (λdelta ⇒ p deltadelta = alpha)
Proof:
Proof not loaded.
Theorem. (PNo_lenbdd_strict_imv_split)
∀L R : set(setprop)prop, ∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∀p : setprop, PNo_rel_strict_imv L R alpha pPNo_rel_strict_split_imv L R alpha p
Proof:
Proof not loaded.
Theorem. (PNo_rel_imv_bdd_ex)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∃beta ∈ ordsucc alpha, ∃p : setprop, PNo_rel_strict_split_imv L R beta p
Proof:
Proof not loaded.
Definition. We define PNo_strict_upperbd to be λL alpha p ⇒ ∀beta, ordinal beta∀q : setprop, L beta qPNoLt beta q alpha p of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_strict_lowerbd to be λR alpha p ⇒ ∀beta, ordinal beta∀q : setprop, R beta qPNoLt alpha p beta q of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_strict_imv to be λL R alpha p ⇒ PNo_strict_upperbd L alpha pPNo_strict_lowerbd R alpha p of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Theorem. (PNoEq_strict_upperbd)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_strict_upperbd L alpha pPNo_strict_upperbd L alpha q
Proof:
Proof not loaded.
Theorem. (PNoEq_strict_lowerbd)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_strict_lowerbd R alpha pPNo_strict_lowerbd R alpha q
Proof:
Proof not loaded.
Theorem. (PNoEq_strict_imv)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_strict_imv L R alpha pPNo_strict_imv L R alpha q
Proof:
Proof not loaded.
Theorem. (PNo_strict_upperbd_imp_rel_strict_upperbd)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀betaordsucc alpha, ∀p : setprop, PNo_strict_upperbd L alpha pPNo_rel_strict_upperbd L beta p
Proof:
Proof not loaded.
Theorem. (PNo_strict_lowerbd_imp_rel_strict_lowerbd)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀betaordsucc alpha, ∀p : setprop, PNo_strict_lowerbd R alpha pPNo_rel_strict_lowerbd R beta p
Proof:
Proof not loaded.
Theorem. (PNo_strict_imv_imp_rel_strict_imv)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀betaordsucc alpha, ∀p : setprop, PNo_strict_imv L R alpha pPNo_rel_strict_imv L R beta p
Proof:
Proof not loaded.
Theorem. (PNo_rel_split_imv_imp_strict_imv)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, PNo_rel_strict_split_imv L R alpha pPNo_strict_imv L R alpha p
Proof:
Proof not loaded.
Theorem. (PNo_lenbdd_strict_imv_ex)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∃beta ∈ ordsucc alpha, ∃p : setprop, PNo_strict_imv L R beta p
Proof:
Proof not loaded.
Definition. We define PNo_least_rep to be λL R beta p ⇒ ordinal betaPNo_strict_imv L R beta p∀gammabeta, ∀q : setprop, ¬ PNo_strict_imv L R gamma q of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Definition. We define PNo_least_rep2 to be λL R beta p ⇒ PNo_least_rep L R beta p∀x, xbeta¬ p x of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Theorem. (PNo_strict_imv_pred_eq)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alpha∀p q : setprop, PNo_least_rep L R alpha pPNo_strict_imv L R alpha q∀betaalpha, p betaq beta
Proof:
Proof not loaded.
Theorem. (PNo_lenbdd_least_rep2_exuniq2)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∃beta, (∃p : setprop, PNo_least_rep2 L R beta p)(∀p q : setprop, PNo_least_rep2 L R beta pPNo_least_rep2 L R beta qp = q)
Proof:
Proof not loaded.
Definition. We define PNo_bd to be λL R ⇒ DescrR_i_io_1 (PNo_least_rep2 L R) of type (set(setprop)prop)(set(setprop)prop)set.
Definition. We define PNo_pred to be λL R ⇒ DescrR_i_io_2 (PNo_least_rep2 L R) of type (set(setprop)prop)(set(setprop)prop)setprop.
Theorem. (PNo_bd_pred_lem)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha RPNo_least_rep2 L R (PNo_bd L R) (PNo_pred L R)
Proof:
Proof not loaded.
Theorem. (PNo_bd_pred)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha RPNo_least_rep L R (PNo_bd L R) (PNo_pred L R)
Proof:
Proof not loaded.
Theorem. (PNo_bd_In)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha RPNo_bd L R ordsucc alpha
Proof:
Proof not loaded.