Primitive . The name
Eps_i is a term of type
(set → prop ) → set .
Axiom. (
Eps_i_ax ) We take the following as an axiom:
∀P : set → prop , ∀x : set , P x → P (Eps_i P )
Definition. We define
True to be
∀p : prop , p → p of type
prop .
Definition. We define
False to be
∀p : prop , p of type
prop .
Definition. We define
not to be
λA : prop ⇒ A → False of type
prop → prop .
Notation . We use
¬ as a prefix operator with priority 700 corresponding to applying term
not .
Definition. We define
and to be
λA B : prop ⇒ ∀p : prop , (A → B → p ) → p of type
prop → prop → prop .
Notation . We use
∧ as an infix operator with priority 780 and which associates to the left corresponding to applying term
and .
Definition. We define
or to be
λA B : prop ⇒ ∀p : prop , (A → p ) → (B → p ) → p of type
prop → prop → prop .
Notation . We use
∨ as an infix operator with priority 785 and which associates to the left corresponding to applying term
or .
Definition. We define
iff to be
λA B : prop ⇒ and (A → B ) (B → A ) of type
prop → prop → prop .
Notation . We use
↔ as an infix operator with priority 805 and no associativity corresponding to applying term
iff .
Beginning of Section Eq
Variable A : SType
Definition. We define
eq to be
λx y : A ⇒ ∀Q : A → A → prop , Q x y → Q y x of type
A → A → prop .
Definition. We define
neq to be
λx y : A ⇒ ¬ eq x y of type
A → A → prop .
End of Section Eq
Notation . We use
= as an infix operator with priority 502 and no associativity corresponding to applying term
eq .
Notation . We use
≠ as an infix operator with priority 502 and no associativity corresponding to applying term
neq .
Beginning of Section FE
Variable A B : SType
Axiom. (
func_ext ) We take the following as an axiom:
∀f g : A → B , (∀x : A , f x = g x ) → f = g
End of Section FE
Beginning of Section Ex
Variable A : SType
Definition. We define
ex to be
λQ : A → prop ⇒ ∀P : prop , (∀x : A , Q x → P ) → P of type
(A → prop ) → prop .
End of Section Ex
Notation . We use
∃ x ...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using
ex .
Axiom. (
prop_ext ) We take the following as an axiom:
∀p q : prop , iff p q → p = q
Primitive . The name
In is a term of type
set → set → prop .
Notation . We use
∈ as an infix operator with priority 500 and no associativity corresponding to applying term
In . Furthermore, we may write
∀ x ∈ A , B to mean
∀ x : set, x ∈ A → B .
Definition. We define
Subq to be
λA B ⇒ ∀ x ∈ A , x ∈ B of type
set → set → prop .
Notation . We use
⊆ as an infix operator with priority 500 and no associativity corresponding to applying term
Subq . Furthermore, we may write
∀ x ⊆ A , B to mean
∀ x : set, x ⊆ A → B .
Axiom. (
set_ext ) We take the following as an axiom:
∀X Y : set , X ⊆ Y → Y ⊆ X → X = Y
Axiom. (
In_ind ) We take the following as an axiom:
∀P : set → prop , (∀X : set , (∀ x ∈ X , P x ) → P X ) → ∀X : set , P X
Notation . We use
∃ x ...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using
ex and handling ∈ or ⊆ ascriptions using
and .
Primitive . The name
Empty is a term of type
set .
Axiom. (
EmptyAx ) We take the following as an axiom:
Primitive . The name
⋃ is a term of type
set → set .
Axiom. (
UnionEq ) We take the following as an axiom:
Primitive . The name
𝒫 is a term of type
set → set .
Axiom. (
PowerEq ) We take the following as an axiom:
∀X Y : set , Y ∈ 𝒫 X ↔ Y ⊆ X
Primitive . The name
Repl is a term of type
set → (set → set ) → set .
Notation .
{B | x ∈ A } is notation for
Repl A (λ x . B ).
Axiom. (
ReplEq ) We take the following as an axiom:
∀A : set , ∀F : set → set , ∀y : set , y ∈ { F x | x ∈ A } ↔ ∃ x ∈ A , y = F x
Definition. We define
TransSet to be
λU : set ⇒ ∀ x ∈ U , x ⊆ U of type
set → prop .
Definition. We define
Union_closed to be
λU : set ⇒ ∀X : set , X ∈ U → ⋃ X ∈ U of type
set → prop .
Definition. We define
Power_closed to be
λU : set ⇒ ∀X : set , X ∈ U → 𝒫 X ∈ U of type
set → prop .
Definition. We define
Repl_closed to be
λU : set ⇒ ∀X : set , X ∈ U → ∀F : set → set , (∀x : set , x ∈ X → F x ∈ U ) → { F x | x ∈ X } ∈ U of type
set → prop .
Primitive . The name
UnivOf is a term of type
set → set .
Axiom. (
UnivOf_In ) We take the following as an axiom:
Axiom. (
UnivOf_Min ) We take the following as an axiom:
Axiom. (
FalseE ) We take the following as an axiom:
Axiom. (
TrueI ) We take the following as an axiom:
Axiom. (
andI ) We take the following as an axiom:
∀A B : prop , A → B → A ∧ B
Axiom. (
andEL ) We take the following as an axiom:
Axiom. (
andER ) We take the following as an axiom:
Axiom. (
orIL ) We take the following as an axiom:
Axiom. (
orIR ) We take the following as an axiom:
Beginning of Section PropN
Variable P1 P2 P3 : prop
Axiom. (
and3I ) We take the following as an axiom:
P1 → P2 → P3 → P1 ∧ P2 ∧ P3
Axiom. (
and3E ) We take the following as an axiom:
P1 ∧ P2 ∧ P3 → (∀p : prop , (P1 → P2 → P3 → p ) → p )
Axiom. (
or3I1 ) We take the following as an axiom:
Axiom. (
or3I2 ) We take the following as an axiom:
Axiom. (
or3I3 ) We take the following as an axiom:
Axiom. (
or3E ) We take the following as an axiom:
P1 ∨ P2 ∨ P3 → (∀p : prop , (P1 → p ) → (P2 → p ) → (P3 → p ) → p )
Variable P4 : prop
Axiom. (
and4I ) We take the following as an axiom:
P1 → P2 → P3 → P4 → P1 ∧ P2 ∧ P3 ∧ P4
Variable P5 : prop
Axiom. (
and5I ) We take the following as an axiom:
P1 → P2 → P3 → P4 → P5 → P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5
End of Section PropN
Axiom. (
iffI ) We take the following as an axiom:
∀A B : prop , (A → B ) → (B → A ) → (A ↔ B )
Axiom. (
iffEL ) We take the following as an axiom:
∀A B : prop , (A ↔ B ) → A → B
Axiom. (
iffER ) We take the following as an axiom:
∀A B : prop , (A ↔ B ) → B → A
Axiom. (
iff_refl ) We take the following as an axiom:
Axiom. (
iff_sym ) We take the following as an axiom:
∀A B : prop , (A ↔ B ) → (B ↔ A )
Axiom. (
iff_trans ) We take the following as an axiom:
∀A B C : prop , (A ↔ B ) → (B ↔ C ) → (A ↔ C )
Axiom. (
eq_i_tra ) We take the following as an axiom:
∀x y z, x = y → y = z → x = z
Axiom. (
f_eq_i ) We take the following as an axiom:
∀f : set → set , ∀x y, x = y → f x = f y
Axiom. (
neq_i_sym ) We take the following as an axiom:
Definition. We define
nIn to be
λx X ⇒ ¬ In x X of type
set → set → prop .
Notation . We use
∉ as an infix operator with priority 502 and no associativity corresponding to applying term
nIn .
Axiom. (
Eps_i_ex ) We take the following as an axiom:
∀P : set → prop , (∃ x, P x ) → P (Eps_i P )
Axiom. (
pred_ext ) We take the following as an axiom:
∀P Q : set → prop , (∀x, P x ↔ Q x ) → P = Q
Axiom. (
prop_ext_2 ) We take the following as an axiom:
∀p q : prop , (p → q ) → (q → p ) → p = q
Axiom. (
Subq_ref ) We take the following as an axiom:
Axiom. (
Subq_tra ) We take the following as an axiom:
∀X Y Z : set , X ⊆ Y → Y ⊆ Z → X ⊆ Z
Axiom. (
Subq_contra ) We take the following as an axiom:
∀X Y z : set , X ⊆ Y → z ∉ Y → z ∉ X
Axiom. (
EmptyE ) We take the following as an axiom:
Axiom. (
Subq_Empty ) We take the following as an axiom:
Axiom. (
Empty_eq ) We take the following as an axiom:
Axiom. (
UnionI ) We take the following as an axiom:
∀X x Y : set , x ∈ Y → Y ∈ X → x ∈ ⋃ X
Axiom. (
UnionE ) We take the following as an axiom:
∀X x : set , x ∈ ⋃ X → ∃ Y : set , x ∈ Y ∧ Y ∈ X
Axiom. (
UnionE_impred ) We take the following as an axiom:
∀X x : set , x ∈ ⋃ X → ∀p : prop , (∀Y : set , x ∈ Y → Y ∈ X → p ) → p
Axiom. (
PowerI ) We take the following as an axiom:
∀X Y : set , Y ⊆ X → Y ∈ 𝒫 X
Axiom. (
PowerE ) We take the following as an axiom:
∀X Y : set , Y ∈ 𝒫 X → Y ⊆ X
Axiom. (
xm ) We take the following as an axiom:
Axiom. (
dneg ) We take the following as an axiom:
Axiom. (
eq_or_nand ) We take the following as an axiom:
Primitive . The name
exactly1of2 is a term of type
prop → prop → prop .
Axiom. (
exactly1of2_E ) We take the following as an axiom:
∀A B : prop , exactly1of2 A B → ∀p : prop , (A → ¬ B → p ) → (¬ A → B → p ) → p
Axiom. (
ReplI ) We take the following as an axiom:
∀A : set , ∀F : set → set , ∀x : set , x ∈ A → F x ∈ { F x | x ∈ A }
Axiom. (
ReplE ) We take the following as an axiom:
∀A : set , ∀F : set → set , ∀y : set , y ∈ { F x | x ∈ A } → ∃ x ∈ A , y = F x
Axiom. (
ReplE_impred ) We take the following as an axiom:
∀A : set , ∀F : set → set , ∀y : set , y ∈ { F x | x ∈ A } → ∀p : prop , (∀x : set , x ∈ A → y = F x → p ) → p
Axiom. (
ReplE' ) We take the following as an axiom:
∀X, ∀f : set → set , ∀p : set → prop , (∀ x ∈ X , p (f x ) ) → ∀ y ∈ { f x | x ∈ X } , p y
Axiom. (
Repl_Empty ) We take the following as an axiom:
Axiom. (
ReplEq_ext ) We take the following as an axiom:
∀X, ∀F G : set → set , (∀ x ∈ X , F x = G x ) → { F x | x ∈ X } = { G x | x ∈ X }
Axiom. (
Repl_inv_eq ) We take the following as an axiom:
∀P : set → prop , ∀f g : set → set , (∀x, P x → g (f x ) = x ) → ∀X, (∀ x ∈ X , P x ) → { g y | y ∈ { f x | x ∈ X } } = X
Axiom. (
Repl_invol_eq ) We take the following as an axiom:
∀P : set → prop , ∀f : set → set , (∀x, P x → f (f x ) = x ) → ∀X, (∀ x ∈ X , P x ) → { f y | y ∈ { f x | x ∈ X } } = X
Primitive . The name
If_i is a term of type
prop → set → set → set .
Notation .
if cond then T else E is notation corresponding to
If_i type cond T E where
type is the inferred type of
T .
Axiom. (
If_i_0 ) We take the following as an axiom:
Axiom. (
If_i_1 ) We take the following as an axiom:
Axiom. (
If_i_or ) We take the following as an axiom:
Primitive . The name
UPair is a term of type
set → set → set .
Notation .
{x ,y } is notation for
UPair x y .
Axiom. (
UPairE ) We take the following as an axiom:
∀x y z : set , x ∈ { y , z } → x = y ∨ x = z
Axiom. (
UPairI1 ) We take the following as an axiom:
Axiom. (
UPairI2 ) We take the following as an axiom:
Primitive . The name
Sing is a term of type
set → set .
Notation .
{x } is notation for
Sing x .
Axiom. (
SingI ) We take the following as an axiom:
Axiom. (
SingE ) We take the following as an axiom:
∀x y : set , y ∈ { x } → y = x
Primitive . The name
binunion is a term of type
set → set → set .
Notation . We use
∪ as an infix operator with priority 345 and which associates to the left corresponding to applying term
binunion .
Axiom. (
binunionI1 ) We take the following as an axiom:
∀X Y z : set , z ∈ X → z ∈ X ∪ Y
Axiom. (
binunionI2 ) We take the following as an axiom:
∀X Y z : set , z ∈ Y → z ∈ X ∪ Y
Axiom. (
binunionE ) We take the following as an axiom:
∀X Y z : set , z ∈ X ∪ Y → z ∈ X ∨ z ∈ Y
Axiom. (
binunionE' ) We take the following as an axiom:
∀X Y z, ∀p : prop , (z ∈ X → p ) → (z ∈ Y → p ) → (z ∈ X ∪ Y → p )
Axiom. (
binunion_asso ) We take the following as an axiom:
∀X Y Z : set , X ∪ (Y ∪ Z ) = (X ∪ Y ) ∪ Z
Axiom. (
binunion_com ) We take the following as an axiom:
∀X Y : set , X ∪ Y = Y ∪ X
Definition. We define
SetAdjoin to be
λX y ⇒ X ∪ { y } of type
set → set → set .
Notation . We now use the set enumeration notation
{...,...,...} in general. If 0 elements are given, then
Empty is used to form the corresponding term. If 1 element is given, then
Sing is used to form the corresponding term. If 2 elements are given, then
UPair is used to form the corresponding term. If more than elements are given, then
SetAdjoin is used to reduce to the case with one fewer elements.
Primitive . The name
famunion is a term of type
set → (set → set ) → set .
Notation . We use
⋃ x [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using
famunion .
Axiom. (
famunionI ) We take the following as an axiom:
∀X : set , ∀F : (set → set ) , ∀x y : set , x ∈ X → y ∈ F x → y ∈ ⋃ x ∈ X F x
Axiom. (
famunionE ) We take the following as an axiom:
∀X : set , ∀F : (set → set ) , ∀y : set , y ∈ (⋃ x ∈ X F x ) → ∃ x ∈ X , y ∈ F x
Axiom. (
famunionE_impred ) We take the following as an axiom:
∀X : set , ∀F : (set → set ) , ∀y : set , y ∈ (⋃ x ∈ X F x ) → ∀p : prop , (∀x, x ∈ X → y ∈ F x → p ) → p
Beginning of Section SepSec
Variable X : set
Variable P : set → prop
Let z : set ≝ Eps_i (λz ⇒ z ∈ X ∧ P z )
Primitive . The name
Sep is a term of type
set .
End of Section SepSec
Notation .
{x ∈ A | B } is notation for
Sep A (λ x . B ).
Axiom. (
SepI ) We take the following as an axiom:
∀X : set , ∀P : (set → prop ) , ∀x : set , x ∈ X → P x → x ∈ { x ∈ X | P x }
Axiom. (
SepE ) We take the following as an axiom:
∀X : set , ∀P : (set → prop ) , ∀x : set , x ∈ { x ∈ X | P x } → x ∈ X ∧ P x
Axiom. (
SepE1 ) We take the following as an axiom:
∀X : set , ∀P : (set → prop ) , ∀x : set , x ∈ { x ∈ X | P x } → x ∈ X
Axiom. (
SepE2 ) We take the following as an axiom:
∀X : set , ∀P : (set → prop ) , ∀x : set , x ∈ { x ∈ X | P x } → P x
Axiom. (
Sep_Subq ) We take the following as an axiom:
∀X : set , ∀P : set → prop , { x ∈ X | P x } ⊆ X
Axiom. (
Sep_In_Power ) We take the following as an axiom:
∀X : set , ∀P : set → prop , { x ∈ X | P x } ∈ 𝒫 X
Primitive . The name
ReplSep is a term of type
set → (set → prop ) → (set → set ) → set .
Notation .
{B | x ∈ A , C } is notation for
ReplSep A (λ x . C ) (λ x . B ).
Axiom. (
ReplSepI ) We take the following as an axiom:
∀X : set , ∀P : set → prop , ∀F : set → set , ∀x : set , x ∈ X → P x → F x ∈ { F x | x ∈ X , P x }
Axiom. (
ReplSepE ) We take the following as an axiom:
∀X : set , ∀P : set → prop , ∀F : set → set , ∀y : set , y ∈ { F x | x ∈ X , P x } → ∃ x : set , x ∈ X ∧ P x ∧ y = F x
Axiom. (
ReplSepE_impred ) We take the following as an axiom:
∀X : set , ∀P : set → prop , ∀F : set → set , ∀y : set , y ∈ { F x | x ∈ X , P x } → ∀p : prop , (∀ x ∈ X , P x → y = F x → p ) → p
Primitive . The name
binintersect is a term of type
set → set → set .
Notation . We use
∩ as an infix operator with priority 340 and which associates to the left corresponding to applying term
binintersect .
Axiom. (
binintersectI ) We take the following as an axiom:
∀X Y z, z ∈ X → z ∈ Y → z ∈ X ∩ Y
Axiom. (
binintersectE ) We take the following as an axiom:
∀X Y z, z ∈ X ∩ Y → z ∈ X ∧ z ∈ Y
Primitive . The name
setminus is a term of type
set → set → set .
Notation . We use
∖ as an infix operator with priority 350 and no associativity corresponding to applying term
setminus .
Axiom. (
setminusI ) We take the following as an axiom:
∀X Y z, (z ∈ X ) → (z ∉ Y ) → z ∈ X ∖ Y
Axiom. (
setminusE ) We take the following as an axiom:
∀X Y z, (z ∈ X ∖ Y ) → z ∈ X ∧ z ∉ Y
Axiom. (
setminusE1 ) We take the following as an axiom:
∀X Y z, (z ∈ X ∖ Y ) → z ∈ X
Axiom. (
setminusE2 ) We take the following as an axiom:
∀X Y z, (z ∈ X ∖ Y ) → z ∉ Y
Axiom. (
In_irref ) We take the following as an axiom:
Axiom. (
In_no2cycle ) We take the following as an axiom:
Primitive . The name
ordsucc is a term of type
set → set .
Axiom. (
ordsuccI1 ) We take the following as an axiom:
Axiom. (
ordsuccI2 ) We take the following as an axiom:
Axiom. (
ordsuccE ) We take the following as an axiom:
Notation . Natural numbers 0,1,2,... are notation for the terms formed using
Empty as 0 and forming successors with
ordsucc .
Axiom. (
ordsucc_inj ) We take the following as an axiom:
Axiom. (
In_0_1 ) We take the following as an axiom:
Axiom. (
In_0_2 ) We take the following as an axiom:
Axiom. (
In_1_2 ) We take the following as an axiom:
Definition. We define
nat_p to be
λn : set ⇒ ∀p : set → prop , p 0 → (∀x : set , p x → p (ordsucc x ) ) → p n of type
set → prop .
Axiom. (
nat_0 ) We take the following as an axiom:
Axiom. (
nat_ordsucc ) We take the following as an axiom:
Axiom. (
nat_1 ) We take the following as an axiom:
Axiom. (
nat_2 ) We take the following as an axiom:
Axiom. (
nat_ind ) We take the following as an axiom:
Axiom. (
nat_inv ) We take the following as an axiom:
Axiom. (
nat_p_trans ) We take the following as an axiom:
Axiom. (
nat_trans ) We take the following as an axiom:
Axiom. (
cases_1 ) We take the following as an axiom:
∀ i ∈ 1 , ∀p : set → prop , p 0 → p i
Axiom. (
cases_2 ) We take the following as an axiom:
∀ i ∈ 2 , ∀p : set → prop , p 0 → p 1 → p i
Axiom. (
cases_3 ) We take the following as an axiom:
∀ i ∈ 3 , ∀p : set → prop , p 0 → p 1 → p 2 → p i
Axiom. (
neq_0_1 ) We take the following as an axiom:
Axiom. (
neq_1_0 ) We take the following as an axiom:
Axiom. (
neq_0_2 ) We take the following as an axiom:
Axiom. (
neq_2_0 ) We take the following as an axiom:
Axiom. (
neq_1_2 ) We take the following as an axiom:
Axiom. (
ZF_closed_E ) We take the following as an axiom:
Primitive . The name
ω is a term of type
set .
Axiom. (
omega_nat_p ) We take the following as an axiom:
Axiom. (
nat_p_omega ) We take the following as an axiom:
Axiom. (
ordinal_1 ) We take the following as an axiom:
Axiom. (
ordinal_2 ) We take the following as an axiom:
Axiom. (
ordinal_ind ) We take the following as an axiom:
∀p : set → prop , (∀alpha, ordinal alpha → (∀ beta ∈ alpha , p beta ) → p alpha ) → ∀alpha, ordinal alpha → p alpha
Definition. We define
inj to be
λX Y f ⇒ (∀ u ∈ X , f u ∈ Y ) ∧ (∀ u v ∈ X , f u = f v → u = v ) of type
set → set → (set → set ) → prop .
Definition. We define
bij to be
λX Y f ⇒ (∀ u ∈ X , f u ∈ Y ) ∧ (∀ u v ∈ X , f u = f v → u = v ) ∧ (∀ w ∈ Y , ∃ u ∈ X , f u = w ) of type
set → set → (set → set ) → prop .
Axiom. (
bijI ) We take the following as an axiom:
∀X Y, ∀f : set → set , (∀ u ∈ X , f u ∈ Y ) → (∀ u v ∈ X , f u = f v → u = v ) → (∀ w ∈ Y , ∃ u ∈ X , f u = w ) → bij X Y f
Axiom. (
bijE ) We take the following as an axiom:
∀X Y, ∀f : set → set , bij X Y f → ∀p : prop , ((∀ u ∈ X , f u ∈ Y ) → (∀ u v ∈ X , f u = f v → u = v ) → (∀ w ∈ Y , ∃ u ∈ X , f u = w ) → p ) → p
Primitive . The name
inv is a term of type
set → (set → set ) → set → set .
Axiom. (
surj_rinv ) We take the following as an axiom:
Axiom. (
inj_linv ) We take the following as an axiom:
∀X, ∀f : set → set , (∀ u v ∈ X , f u = f v → u = v ) → ∀ x ∈ X , inv X f (f x ) = x
Axiom. (
bij_inv ) We take the following as an axiom:
∀X Y, ∀f : set → set , bij X Y f → bij Y X (inv X f )
Axiom. (
bij_id ) We take the following as an axiom:
Axiom. (
bij_comp ) We take the following as an axiom:
∀X Y Z : set , ∀f g : set → set , bij X Y f → bij Y Z g → bij X Z (λx ⇒ g (f x ) )
Definition. We define
equip to be
λX Y : set ⇒ ∃ f : set → set , bij X Y f of type
set → set → prop .
Axiom. (
equip_ref ) We take the following as an axiom:
Axiom. (
equip_sym ) We take the following as an axiom:
Axiom. (
equip_tra ) We take the following as an axiom:
Beginning of Section SchroederBernstein
End of Section SchroederBernstein
Beginning of Section PigeonHole
End of Section PigeonHole
Definition. We define
finite to be
λX ⇒ ∃ n ∈ ω , equip X n of type
set → prop .
Axiom. (
finite_ind ) We take the following as an axiom:
Axiom. (
Subq_finite ) We take the following as an axiom:
Axiom. (
exandE_i ) We take the following as an axiom:
∀P Q : set → prop , (∃ x, P x ∧ Q x ) → ∀r : prop , (∀x, P x → Q x → r ) → r
Axiom. (
exandE_ii ) We take the following as an axiom:
∀P Q : (set → set ) → prop , (∃ x : set → set , P x ∧ Q x ) → ∀p : prop , (∀x : set → set , P x → Q x → p ) → p
Axiom. (
exandE_iii ) We take the following as an axiom:
∀P Q : (set → set → set ) → prop , (∃ x : set → set → set , P x ∧ Q x ) → ∀p : prop , (∀x : set → set → set , P x → Q x → p ) → p
Axiom. (
exandE_iiii ) We take the following as an axiom:
∀P Q : (set → set → set → set ) → prop , (∃ x : set → set → set → set , P x ∧ Q x ) → ∀p : prop , (∀x : set → set → set → set , P x → Q x → p ) → p
Beginning of Section Descr_ii
Variable P : (set → set ) → prop
Primitive . The name
Descr_ii is a term of type
set → set .
Hypothesis Pex : ∃ f : set → set , P f
Hypothesis Puniq : ∀f g : set → set , P f → P g → f = g
End of Section Descr_ii
Beginning of Section Descr_iii
Variable P : (set → set → set ) → prop
Primitive . The name
Descr_iii is a term of type
set → set → set .
Hypothesis Pex : ∃ f : set → set → set , P f
Hypothesis Puniq : ∀f g : set → set → set , P f → P g → f = g
End of Section Descr_iii
Beginning of Section Descr_Vo1
Primitive . The name
Descr_Vo1 is a term of type
Vo 1 .
Hypothesis Pex : ∃ f : Vo 1 , P f
Hypothesis Puniq : ∀f g : Vo 1 , P f → P g → f = g
End of Section Descr_Vo1
Beginning of Section If_ii
Variable p : prop
Variable f g : set → set
Primitive . The name
If_ii is a term of type
set → set .
Axiom. (
If_ii_1 ) We take the following as an axiom:
Axiom. (
If_ii_0 ) We take the following as an axiom:
End of Section If_ii
Beginning of Section If_iii
Variable p : prop
Variable f g : set → set → set
Primitive . The name
If_iii is a term of type
set → set → set .
Axiom. (
If_iii_1 ) We take the following as an axiom:
Axiom. (
If_iii_0 ) We take the following as an axiom:
End of Section If_iii
Beginning of Section EpsilonRec_i
Variable F : set → (set → set ) → set
Primitive . The name
In_rec_i is a term of type
set → set .
Hypothesis Fr : ∀X : set , ∀g h : set → set , (∀ x ∈ X , g x = h x ) → F X g = F X h
Axiom. (
In_rec_i_eq ) We take the following as an axiom:
End of Section EpsilonRec_i
Beginning of Section EpsilonRec_ii
Variable F : set → (set → (set → set ) ) → (set → set )
Primitive . The name
In_rec_ii is a term of type
set → (set → set ) .
Hypothesis Fr : ∀X : set , ∀g h : set → (set → set ) , (∀ x ∈ X , g x = h x ) → F X g = F X h
End of Section EpsilonRec_ii
Beginning of Section EpsilonRec_iii
Variable F : set → (set → (set → set → set ) ) → (set → set → set )
Primitive . The name
In_rec_iii is a term of type
set → (set → set → set ) .
Hypothesis Fr : ∀X : set , ∀g h : set → (set → set → set ) , (∀ x ∈ X , g x = h x ) → F X g = F X h
End of Section EpsilonRec_iii
Beginning of Section NatRec
Variable z : set
Variable f : set → set → set
Let F : set → (set → set ) → set ≝ λn g ⇒ if ⋃ n ∈ n then f (⋃ n ) (g (⋃ n ) ) else z
Axiom. (
nat_primrec_r ) We take the following as an axiom:
∀X : set , ∀g h : set → set , (∀ x ∈ X , g x = h x ) → F X g = F X h
End of Section NatRec
Beginning of Section NatArith
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_nat .
Axiom. (
add_nat_0R ) We take the following as an axiom:
Axiom. (
add_nat_SR ) We take the following as an axiom:
Axiom. (
add_nat_p ) We take the following as an axiom:
Axiom. (
add_nat_0L ) We take the following as an axiom:
Axiom. (
add_nat_SL ) We take the following as an axiom:
Axiom. (
add_nat_com ) We take the following as an axiom:
Definition. We define
mul_nat to be
λn m : set ⇒ nat_primrec 0 (λ_ r ⇒ n + r ) m of type
set → set → set .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_nat .
Axiom. (
mul_nat_0R ) We take the following as an axiom:
Axiom. (
mul_nat_SR ) We take the following as an axiom:
Axiom. (
mul_nat_p ) We take the following as an axiom:
End of Section NatArith
Axiom. (
Inj1_eq ) We take the following as an axiom:
Axiom. (
Inj1I1 ) We take the following as an axiom:
Axiom. (
Inj1I2 ) We take the following as an axiom:
Axiom. (
Inj1E ) We take the following as an axiom:
Axiom. (
Inj1NE1 ) We take the following as an axiom:
Axiom. (
Inj1NE2 ) We take the following as an axiom:
Definition. We define
Inj0 to be
λX ⇒ { Inj1 x | x ∈ X } of type
set → set .
Axiom. (
Inj0I ) We take the following as an axiom:
Axiom. (
Inj0E ) We take the following as an axiom:
Axiom. (
Unj_eq ) We take the following as an axiom:
Axiom. (
Unj_Inj1_eq ) We take the following as an axiom:
Axiom. (
Inj1_inj ) We take the following as an axiom:
Axiom. (
Unj_Inj0_eq ) We take the following as an axiom:
Axiom. (
Inj0_inj ) We take the following as an axiom:
Axiom. (
Inj0_0 ) We take the following as an axiom:
Notation . We use
+ as an infix operator with priority 450 and which associates to the left corresponding to applying term
setsum .
Axiom. (
Inj0_setsum ) We take the following as an axiom:
∀X Y x : set , x ∈ X → Inj0 x ∈ X + Y
Axiom. (
Inj1_setsum ) We take the following as an axiom:
∀X Y y : set , y ∈ Y → Inj1 y ∈ X + Y
Axiom. (
eq_1_Sing0 ) We take the following as an axiom:
Axiom. (
setsum_0_0 ) We take the following as an axiom:
Beginning of Section pair_setsum
Axiom. (
pairI0 ) We take the following as an axiom:
∀X Y x, x ∈ X → pair 0 x ∈ pair X Y
Axiom. (
pairI1 ) We take the following as an axiom:
∀X Y y, y ∈ Y → pair 1 y ∈ pair X Y
Axiom. (
pairE ) We take the following as an axiom:
∀X Y z, z ∈ pair X Y → (∃ x ∈ X , z = pair 0 x ) ∨ (∃ y ∈ Y , z = pair 1 y )
Axiom. (
pairE0 ) We take the following as an axiom:
∀X Y x, pair 0 x ∈ pair X Y → x ∈ X
Axiom. (
pairE1 ) We take the following as an axiom:
∀X Y y, pair 1 y ∈ pair X Y → y ∈ Y
Axiom. (
proj0I ) We take the following as an axiom:
Axiom. (
proj0E ) We take the following as an axiom:
Axiom. (
proj1I ) We take the following as an axiom:
Axiom. (
proj1E ) We take the following as an axiom:
Definition. We define
Sigma to be
λX Y ⇒ ⋃ x ∈ X { pair x y | y ∈ Y x } of type
set → (set → set ) → set .
Notation . We use
∑ x ...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using
Sigma .
Axiom. (
pair_Sigma ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀ x ∈ X , ∀ y ∈ Y x , pair x y ∈ ∑ x ∈ X , Y x
Axiom. (
proj0_Sigma ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀z : set , z ∈ (∑ x ∈ X , Y x ) → proj0 z ∈ X
Axiom. (
proj1_Sigma ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀z : set , z ∈ (∑ x ∈ X , Y x ) → proj1 z ∈ Y (proj0 z )
Axiom. (
pair_Sigma_E1 ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀x y : set , pair x y ∈ (∑ x ∈ X , Y x ) → y ∈ Y x
Axiom. (
Sigma_E ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀z : set , z ∈ (∑ x ∈ X , Y x ) → ∃ x ∈ X , ∃ y ∈ Y x , z = pair x y
Definition. We define
setprod to be
λX Y : set ⇒ ∑ x ∈ X , Y of type
set → set → set .
Notation . We use
⨯ as an infix operator with priority 440 and which associates to the left corresponding to applying term
setprod .
Let lam : set → (set → set ) → set ≝ Sigma
Definition. We define
ap to be
λf x ⇒ { proj1 z | z ∈ f , ∃ y : set , z = pair x y } of type
set → set → set .
Notation . When
x is a set, a term
x y is notation for
ap x y .
Notation .
λ x ∈ A ⇒ B is notation for the set
Sigma A (λ x : set ⇒ B ).
Notation . We now use n-tuple notation (
a0 ,...,
an-1 ) for n ≥ 2 for λ i ∈
n .
if i = 0
then a0 else ... if i =
n-2 then an-2 else an-1 .
Axiom. (
lamI ) We take the following as an axiom:
∀X : set , ∀F : set → set , ∀ x ∈ X , ∀ y ∈ F x , pair x y ∈ λ x ∈ X ⇒ F x
Axiom. (
lamE ) We take the following as an axiom:
∀X : set , ∀F : set → set , ∀z : set , z ∈ (λ x ∈ X ⇒ F x ) → ∃ x ∈ X , ∃ y ∈ F x , z = pair x y
Axiom. (
apI ) We take the following as an axiom:
∀f x y, pair x y ∈ f → y ∈ f x
Axiom. (
apE ) We take the following as an axiom:
∀f x y, y ∈ f x → pair x y ∈ f
Axiom. (
beta ) We take the following as an axiom:
∀X : set , ∀F : set → set , ∀x : set , x ∈ X → (λ x ∈ X ⇒ F x ) x = F x
Axiom. (
proj0_ap_0 ) We take the following as an axiom:
Axiom. (
proj1_ap_1 ) We take the following as an axiom:
Axiom. (
pair_ap_0 ) We take the following as an axiom:
∀x y : set , (pair x y ) 0 = x
Axiom. (
pair_ap_1 ) We take the following as an axiom:
∀x y : set , (pair x y ) 1 = y
Axiom. (
ap0_Sigma ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀z : set , z ∈ (∑ x ∈ X , Y x ) → (z 0 ) ∈ X
Axiom. (
ap1_Sigma ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀z : set , z ∈ (∑ x ∈ X , Y x ) → (z 1 ) ∈ (Y (z 0 ) )
Definition. We define
pair_p to be
λu : set ⇒ pair (u 0 ) (u 1 ) = u of type
set → prop .
Axiom. (
pair_p_I ) We take the following as an axiom:
Axiom. (
tuple_pair ) We take the following as an axiom:
∀x y : set , pair x y = ( x , y )
Definition. We define
Pi to be
λX Y ⇒ { f ∈ 𝒫 (∑ x ∈ X , ⋃ (Y x ) ) | ∀ x ∈ X , f x ∈ Y x } of type
set → (set → set ) → set .
Notation . We use
∏ x ...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using
Pi .
Axiom. (
PiI ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀f : set , (∀ u ∈ f , pair_p u ∧ u 0 ∈ X ) → (∀ x ∈ X , f x ∈ Y x ) → f ∈ ∏ x ∈ X , Y x
Axiom. (
lam_Pi ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀F : set → set , (∀ x ∈ X , F x ∈ Y x ) → (λ x ∈ X ⇒ F x ) ∈ (∏ x ∈ X , Y x )
Axiom. (
ap_Pi ) We take the following as an axiom:
∀X : set , ∀Y : set → set , ∀f : set , ∀x : set , f ∈ (∏ x ∈ X , Y x ) → x ∈ X → f x ∈ Y x
Definition. We define
setexp to be
λX Y : set ⇒ ∏ y ∈ Y , X of type
set → set → set .
Notation . We use
:^: as an infix operator with priority 430 and which associates to the left corresponding to applying term
setexp .
Axiom. (
lamI2 ) We take the following as an axiom:
Beginning of Section Tuples
Variable x0 x1 : set
End of Section Tuples
End of Section pair_setsum
Notation . We use
∑ x ...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using
Sigma .
Notation . We use
⨯ as an infix operator with priority 440 and which associates to the left corresponding to applying term
setprod .
Notation . We use
∏ x ...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using
Pi .
Notation . We use
:^: as an infix operator with priority 430 and which associates to the left corresponding to applying term
setexp .
Primitive . The name
DescrR_i_io_1 is a term of type
(set → (set → prop ) → prop ) → set .
Primitive . The name
DescrR_i_io_2 is a term of type
(set → (set → prop ) → prop ) → set → prop .
Definition. We define
PNoEq_ to be
λalpha p q ⇒ ∀ beta ∈ alpha , p beta ↔ q beta of type
set → (set → prop ) → (set → prop ) → prop .
Axiom. (
PNoEq_ref_ ) We take the following as an axiom:
∀alpha, ∀p : set → prop , PNoEq_ alpha p p
Axiom. (
PNoEq_sym_ ) We take the following as an axiom:
∀alpha, ∀p q : set → prop , PNoEq_ alpha p q → PNoEq_ alpha q p
Axiom. (
PNoEq_tra_ ) We take the following as an axiom:
Axiom. (
PNoLt_E_ ) We take the following as an axiom:
Axiom. (
PNoLt_irref_ ) We take the following as an axiom:
∀alpha, ∀p : set → prop , ¬ PNoLt_ alpha p p
Axiom. (
PNoLt_mon_ ) We take the following as an axiom:
Axiom. (
PNoLt_tra_ ) We take the following as an axiom:
Primitive . The name
PNoLt is a term of type
set → (set → prop ) → set → (set → prop ) → prop .
Axiom. (
PNoLtI1 ) We take the following as an axiom:
Axiom. (
PNoLtI2 ) We take the following as an axiom:
Axiom. (
PNoLtI3 ) We take the following as an axiom:
Axiom. (
PNoLtE ) We take the following as an axiom:
Axiom. (
PNoLt_irref ) We take the following as an axiom:
∀alpha, ∀p : set → prop , ¬ PNoLt alpha p alpha p
Axiom. (
PNoLtEq_tra ) We take the following as an axiom:
Axiom. (
PNoEqLt_tra ) We take the following as an axiom:
Axiom. (
PNoLt_tra ) We take the following as an axiom:
Definition. We define
PNoLe to be
λalpha p beta q ⇒ PNoLt alpha p beta q ∨ alpha = beta ∧ PNoEq_ alpha p q of type
set → (set → prop ) → set → (set → prop ) → prop .
Axiom. (
PNoLeI1 ) We take the following as an axiom:
Axiom. (
PNoLeI2 ) We take the following as an axiom:
∀alpha, ∀p q : set → prop , PNoEq_ alpha p q → PNoLe alpha p alpha q
Axiom. (
PNoLe_ref ) We take the following as an axiom:
∀alpha, ∀p : set → prop , PNoLe alpha p alpha p
Axiom. (
PNoLtLe_tra ) We take the following as an axiom:
Axiom. (
PNoLeLt_tra ) We take the following as an axiom:
Axiom. (
PNoEqLe_tra ) We take the following as an axiom:
Axiom. (
PNoLe_tra ) We take the following as an axiom:
Axiom. (
PNoLe_downc ) We take the following as an axiom:
Axiom. (
PNo_downc_ref ) We take the following as an axiom:
∀L : set → (set → prop ) → prop , ∀alpha, ordinal alpha → ∀p : set → prop , L alpha p → PNo_downc L alpha p
Axiom. (
PNo_upc_ref ) We take the following as an axiom:
∀R : set → (set → prop ) → prop , ∀alpha, ordinal alpha → ∀p : set → prop , R alpha p → PNo_upc R alpha p
Axiom. (
PNoLe_upc ) We take the following as an axiom:
Definition. We define
PNoLt_pwise to be
λL R ⇒ ∀gamma, ordinal gamma → ∀p : set → prop , L gamma p → ∀delta, ordinal delta → ∀q : set → prop , R delta q → PNoLt gamma p delta q of type
(set → (set → prop ) → prop ) → (set → (set → prop ) → prop ) → prop .
Axiom. (
PNo_extend0_eq ) We take the following as an axiom:
∀alpha, ∀p : set → prop , PNoEq_ alpha p (λdelta ⇒ p delta ∧ delta ≠ alpha )
Axiom. (
PNo_extend1_eq ) We take the following as an axiom:
∀alpha, ∀p : set → prop , PNoEq_ alpha p (λdelta ⇒ p delta ∨ delta = alpha )
Definition. We define
PNo_lenbdd to be
λalpha L ⇒ ∀beta, ∀p : set → prop , L beta p → beta ∈ alpha of type
set → (set → (set → prop ) → prop ) → prop .
Definition. We define
PNo_least_rep2 to be
λL R beta p ⇒ PNo_least_rep L R beta p ∧ ∀x, x ∉ beta → ¬ p x of type
(set → (set → prop ) → prop ) → (set → (set → prop ) → prop ) → set → (set → prop ) → prop .
Primitive . The name
PNo_bd is a term of type
(set → (set → prop ) → prop ) → (set → (set → prop ) → prop ) → set .
Primitive . The name
PNo_pred is a term of type
(set → (set → prop ) → prop ) → (set → (set → prop ) → prop ) → set → prop .
Axiom. (
PNo_bd_pred ) We take the following as an axiom:
Axiom. (
PNo_bd_In ) We take the following as an axiom:
Beginning of Section TaggedSets
Notation . We use
' as a postfix operator with priority 100 corresponding to applying term
tag .
Definition. We define
SNoElts_ to be
λalpha ⇒ alpha ∪ { beta ' | beta ∈ alpha } of type
set → set .
Axiom. (
SNoElts_mon ) We take the following as an axiom:
Axiom. (
PNoEq_PSNo ) We take the following as an axiom:
Axiom. (
SNo_PSNo ) We take the following as an axiom:
Primitive . The name
SNo is a term of type
set → prop .
Axiom. (
SNo_SNo ) We take the following as an axiom:
Primitive . The name
SNoLev is a term of type
set → set .
Axiom. (
SNoLev_uniq ) We take the following as an axiom:
Axiom. (
SNoLev_prop ) We take the following as an axiom:
Axiom. (
SNoLev_ ) We take the following as an axiom:
Axiom. (
SNoLev_PSNo ) We take the following as an axiom:
Axiom. (
SNo_Subq ) We take the following as an axiom:
Definition. We define
SNoEq_ to be
λalpha x y ⇒ PNoEq_ alpha (λbeta ⇒ beta ∈ x ) (λbeta ⇒ beta ∈ y ) of type
set → set → set → prop .
Axiom. (
SNoEq_I ) We take the following as an axiom:
Axiom. (
SNo_eq ) We take the following as an axiom:
End of Section TaggedSets
Notation . We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt .
Notation . We use
≤ as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe .
Axiom. (
SNoLtLe ) We take the following as an axiom:
Axiom. (
SNoLeE ) We take the following as an axiom:
Axiom. (
SNoEq_sym_ ) We take the following as an axiom:
Axiom. (
SNoEq_tra_ ) We take the following as an axiom:
Axiom. (
SNoLtE ) We take the following as an axiom:
Axiom. (
SNoLtI2 ) We take the following as an axiom:
Axiom. (
SNoLtI3 ) We take the following as an axiom:
Axiom. (
SNoLt_irref ) We take the following as an axiom:
Axiom. (
SNoLt_tra ) We take the following as an axiom:
Axiom. (
SNoLe_ref ) We take the following as an axiom:
Axiom. (
SNoLtLe_tra ) We take the following as an axiom:
Axiom. (
SNoLeLt_tra ) We take the following as an axiom:
Axiom. (
SNoLe_tra ) We take the following as an axiom:
Axiom. (
SNoLtLe_or ) We take the following as an axiom:
Axiom. (
SNoCutP_L_0 ) We take the following as an axiom:
Axiom. (
SNoCutP_0_R ) We take the following as an axiom:
Axiom. (
SNoCutP_0_0 ) We take the following as an axiom:
Axiom. (
SNoS_E ) We take the following as an axiom:
Beginning of Section TaggedSets2
Notation . We use
' as a postfix operator with priority 100 corresponding to applying term
tag .
Axiom. (
SNoS_I ) We take the following as an axiom:
Axiom. (
SNoS_I2 ) We take the following as an axiom:
Axiom. (
SNoS_Subq ) We take the following as an axiom:
Axiom. (
SNoS_E2 ) We take the following as an axiom:
Axiom. (
SNoS_In_neq ) We take the following as an axiom:
Axiom. (
SNoS_SNoLev ) We take the following as an axiom:
Axiom. (
SNoL_E ) We take the following as an axiom:
Axiom. (
SNoR_E ) We take the following as an axiom:
Axiom. (
SNoL_SNoS_ ) We take the following as an axiom:
Axiom. (
SNoR_SNoS_ ) We take the following as an axiom:
Axiom. (
SNoL_SNoS ) We take the following as an axiom:
Axiom. (
SNoR_SNoS ) We take the following as an axiom:
Axiom. (
SNoL_I ) We take the following as an axiom:
Axiom. (
SNoR_I ) We take the following as an axiom:
Axiom. (
SNo_eta ) We take the following as an axiom:
Axiom. (
SNoCut_Le ) We take the following as an axiom:
Axiom. (
SNoCut_ext ) We take the following as an axiom:
Axiom. (
ordinal_SNo ) We take the following as an axiom:
Axiom. (
nat_p_SNo ) We take the following as an axiom:
Axiom. (
omega_SNo ) We take the following as an axiom:
Axiom. (
SNo_0 ) We take the following as an axiom:
Axiom. (
SNo_1 ) We take the following as an axiom:
Axiom. (
SNo_2 ) We take the following as an axiom:
Axiom. (
SNoLev_0 ) We take the following as an axiom:
Axiom. (
SNoCut_0_0 ) We take the following as an axiom:
Axiom. (
SNoL_0 ) We take the following as an axiom:
Axiom. (
SNoR_0 ) We take the following as an axiom:
Axiom. (
SNoL_1 ) We take the following as an axiom:
Axiom. (
SNoR_1 ) We take the following as an axiom:
Axiom. (
eps_0_1 ) We take the following as an axiom:
Axiom. (
SNo__eps_ ) We take the following as an axiom:
Axiom. (
SNo_eps_ ) We take the following as an axiom:
Axiom. (
SNo_eps_1 ) We take the following as an axiom:
Axiom. (
SNoLev_eps_ ) We take the following as an axiom:
Axiom. (
SNo_eps_pos ) We take the following as an axiom:
Axiom. (
eps_SNo_eq ) We take the following as an axiom:
Axiom. (
eps_SNoCutP ) We take the following as an axiom:
Axiom. (
eps_SNoCut ) We take the following as an axiom:
End of Section TaggedSets2
Axiom. (
SNo_etaE ) We take the following as an axiom:
Axiom. (
SNo_ind ) We take the following as an axiom:
Beginning of Section SurrealRecI
Variable F : set → (set → set ) → set
Primitive . The name
SNo_rec_i is a term of type
set → set .
Hypothesis Fr : ∀z, SNo z → ∀g h : set → set , (∀ w ∈ SNoS_ (SNoLev z ) , g w = h w ) → F z g = F z h
End of Section SurrealRecI
Beginning of Section SurrealRecII
Variable F : set → (set → (set → set ) ) → (set → set )
Let G : set → (set → set → (set → set ) ) → set → (set → set ) ≝ λalpha g ⇒ If_iii (ordinal alpha ) (λz : set ⇒ If_ii (z ∈ SNoS_ (ordsucc alpha ) ) (F z (λw ⇒ g (SNoLev w ) w ) ) default ) (λz : set ⇒ default )
Primitive . The name
SNo_rec_ii is a term of type
set → (set → set ) .
Hypothesis Fr : ∀z, SNo z → ∀g h : set → (set → set ) , (∀ w ∈ SNoS_ (SNoLev z ) , g w = h w ) → F z g = F z h
End of Section SurrealRecII
Beginning of Section SurrealRec2
Variable F : set → set → (set → set → set ) → set
Let G : set → (set → set → set ) → set → (set → set ) → set ≝ λw f z g ⇒ F w z (λx y ⇒ if x = w then g y else f x y )
Primitive . The name
SNo_rec2 is a term of type
set → set → set .
Axiom. (
SNo_rec2_eq ) We take the following as an axiom:
End of Section SurrealRec2
Axiom. (
SNoLev_ind ) We take the following as an axiom:
Axiom. (
SNoLev_ind2 ) We take the following as an axiom:
Axiom. (
SNoLev_ind3 ) We take the following as an axiom:
∀P : set → set → set → prop , (∀x y z, SNo x → SNo y → SNo z → (∀ u ∈ SNoS_ (SNoLev x ) , P u y z ) → (∀ v ∈ SNoS_ (SNoLev y ) , P x v z ) → (∀ w ∈ SNoS_ (SNoLev z ) , P x y w ) → (∀ u ∈ SNoS_ (SNoLev x ) , ∀ v ∈ SNoS_ (SNoLev y ) , P u v z ) → (∀ u ∈ SNoS_ (SNoLev x ) , ∀ w ∈ SNoS_ (SNoLev z ) , P u y w ) → (∀ v ∈ SNoS_ (SNoLev y ) , ∀ w ∈ SNoS_ (SNoLev z ) , P x v w ) → (∀ u ∈ SNoS_ (SNoLev x ) , ∀ v ∈ SNoS_ (SNoLev y ) , ∀ w ∈ SNoS_ (SNoLev z ) , P u v w ) → P x y z ) → ∀x y z, SNo x → SNo y → SNo z → P x y z
Axiom. (
SNo_omega ) We take the following as an axiom:
Axiom. (
SNoLt_0_1 ) We take the following as an axiom:
Axiom. (
SNoLt_0_2 ) We take the following as an axiom:
Axiom. (
SNoLt_1_2 ) We take the following as an axiom:
Axiom. (
restr_SNo_ ) We take the following as an axiom:
Axiom. (
restr_SNo ) We take the following as an axiom:
Axiom. (
restr_SNoEq ) We take the following as an axiom:
Beginning of Section SurrealMinus
Primitive . The name
minus_SNo is a term of type
set → set .
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
≤ as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe .
End of Section SurrealMinus
Beginning of Section SurrealAdd
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Primitive . The name
add_SNo is a term of type
set → set → set .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Axiom. (
add_SNo_eq ) We take the following as an axiom:
Axiom. (
SNo_add_SNo ) We take the following as an axiom:
Axiom. (
add_SNo_Lt1 ) We take the following as an axiom:
Axiom. (
add_SNo_Le1 ) We take the following as an axiom:
Axiom. (
add_SNo_Lt2 ) We take the following as an axiom:
Axiom. (
add_SNo_Le2 ) We take the following as an axiom:
Axiom. (
add_SNo_Lt3 ) We take the following as an axiom:
Axiom. (
add_SNo_Le3 ) We take the following as an axiom:
Axiom. (
add_SNo_com ) We take the following as an axiom:
Axiom. (
add_SNo_0L ) We take the following as an axiom:
Axiom. (
add_SNo_0R ) We take the following as an axiom:
Axiom. (
minus_SNo_0 ) We take the following as an axiom:
Axiom. (
add_SNo_Lt4 ) We take the following as an axiom:
End of Section SurrealAdd
Beginning of Section SurrealMul
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Axiom. (
mul_SNo_eq ) We take the following as an axiom:
Axiom. (
mul_SNo_eq_2 ) We take the following as an axiom:
∀x y, SNo x → SNo y → ∀p : prop , (∀L R, (∀u, u ∈ L → (∀q : prop , (∀ w0 ∈ SNoL x , ∀ w1 ∈ SNoL y , u = w0 * y + x * w1 + - w0 * w1 → q ) → (∀ z0 ∈ SNoR x , ∀ z1 ∈ SNoR y , u = z0 * y + x * z1 + - z0 * z1 → q ) → q ) ) → (∀ w0 ∈ SNoL x , ∀ w1 ∈ SNoL y , w0 * y + x * w1 + - w0 * w1 ∈ L ) → (∀ z0 ∈ SNoR x , ∀ z1 ∈ SNoR y , z0 * y + x * z1 + - z0 * z1 ∈ L ) → (∀u, u ∈ R → (∀q : prop , (∀ w0 ∈ SNoL x , ∀ z1 ∈ SNoR y , u = w0 * y + x * z1 + - w0 * z1 → q ) → (∀ z0 ∈ SNoR x , ∀ w1 ∈ SNoL y , u = z0 * y + x * w1 + - z0 * w1 → q ) → q ) ) → (∀ w0 ∈ SNoL x , ∀ z1 ∈ SNoR y , w0 * y + x * z1 + - w0 * z1 ∈ R ) → (∀ z0 ∈ SNoR x , ∀ w1 ∈ SNoL y , z0 * y + x * w1 + - z0 * w1 ∈ R ) → x * y = SNoCut L R → p ) → p
Axiom. (
mul_SNo_prop_1 ) We take the following as an axiom:
∀x, SNo x → ∀y, SNo y → ∀p : prop , (SNo (x * y ) → (∀ u ∈ SNoL x , ∀ v ∈ SNoL y , u * y + x * v < x * y + u * v ) → (∀ u ∈ SNoR x , ∀ v ∈ SNoR y , u * y + x * v < x * y + u * v ) → (∀ u ∈ SNoL x , ∀ v ∈ SNoR y , x * y + u * v < u * y + x * v ) → (∀ u ∈ SNoR x , ∀ v ∈ SNoL y , x * y + u * v < u * y + x * v ) → p ) → p
Axiom. (
SNo_mul_SNo ) We take the following as an axiom:
Axiom. (
mul_SNo_eq_3 ) We take the following as an axiom:
∀x y, SNo x → SNo y → ∀p : prop , (∀L R, SNoCutP L R → (∀u, u ∈ L → (∀q : prop , (∀ w0 ∈ SNoL x , ∀ w1 ∈ SNoL y , u = w0 * y + x * w1 + - w0 * w1 → q ) → (∀ z0 ∈ SNoR x , ∀ z1 ∈ SNoR y , u = z0 * y + x * z1 + - z0 * z1 → q ) → q ) ) → (∀ w0 ∈ SNoL x , ∀ w1 ∈ SNoL y , w0 * y + x * w1 + - w0 * w1 ∈ L ) → (∀ z0 ∈ SNoR x , ∀ z1 ∈ SNoR y , z0 * y + x * z1 + - z0 * z1 ∈ L ) → (∀u, u ∈ R → (∀q : prop , (∀ w0 ∈ SNoL x , ∀ z1 ∈ SNoR y , u = w0 * y + x * z1 + - w0 * z1 → q ) → (∀ z0 ∈ SNoR x , ∀ w1 ∈ SNoL y , u = z0 * y + x * w1 + - z0 * w1 → q ) → q ) ) → (∀ w0 ∈ SNoL x , ∀ z1 ∈ SNoR y , w0 * y + x * z1 + - w0 * z1 ∈ R ) → (∀ z0 ∈ SNoR x , ∀ w1 ∈ SNoL y , z0 * y + x * w1 + - z0 * w1 ∈ R ) → x * y = SNoCut L R → p ) → p
Axiom. (
mul_SNo_Lt ) We take the following as an axiom:
Axiom. (
mul_SNo_Le ) We take the following as an axiom:
Axiom. (
mul_SNo_Subq_lem ) We take the following as an axiom:
∀x y X Y Z W, ∀U U', (∀u, u ∈ U → (∀q : prop , (∀ w0 ∈ X , ∀ w1 ∈ Y , u = w0 * y + x * w1 + - w0 * w1 → q ) → (∀ z0 ∈ Z , ∀ z1 ∈ W , u = z0 * y + x * z1 + - z0 * z1 → q ) → q ) ) → (∀ w0 ∈ X , ∀ w1 ∈ Y , w0 * y + x * w1 + - w0 * w1 ∈ U' ) → (∀ w0 ∈ Z , ∀ w1 ∈ W , w0 * y + x * w1 + - w0 * w1 ∈ U' ) → U ⊆ U'
Axiom. (
mul_SNo_com ) We take the following as an axiom:
Beginning of Section mul_SNo_assoc_lems
Variable M : set → set → set
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
M .
Hypothesis SNo_M : ∀x y, SNo x → SNo y → SNo (x * y )
Hypothesis DL : ∀x y z, SNo x → SNo y → SNo z → x * (y + z ) = x * y + x * z
Hypothesis DR : ∀x y z, SNo x → SNo y → SNo z → (x + y ) * z = x * z + y * z
Hypothesis M_Lt : ∀x y u v, SNo x → SNo y → SNo u → SNo v → u < x → v < y → u * y + x * v < x * y + u * v
Hypothesis M_Le : ∀x y u v, SNo x → SNo y → SNo u → SNo v → u ≤ x → v ≤ y → u * y + x * v ≤ x * y + u * v
Axiom. (
mul_SNo_assoc_lem1 ) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → (∀ u ∈ SNoS_ (SNoLev x ) , u * (y * z ) = (u * y ) * z ) → (∀ v ∈ SNoS_ (SNoLev y ) , x * (v * z ) = (x * v ) * z ) → (∀ w ∈ SNoS_ (SNoLev z ) , x * (y * w ) = (x * y ) * w ) → (∀ u ∈ SNoS_ (SNoLev x ) , ∀ v ∈ SNoS_ (SNoLev y ) , u * (v * z ) = (u * v ) * z ) → (∀ u ∈ SNoS_ (SNoLev x ) , ∀ w ∈ SNoS_ (SNoLev z ) , u * (y * w ) = (u * y ) * w ) → (∀ v ∈ SNoS_ (SNoLev y ) , ∀ w ∈ SNoS_ (SNoLev z ) , x * (v * w ) = (x * v ) * w ) → (∀ u ∈ SNoS_ (SNoLev x ) , ∀ v ∈ SNoS_ (SNoLev y ) , ∀ w ∈ SNoS_ (SNoLev z ) , u * (v * w ) = (u * v ) * w ) → ∀L, (∀ u ∈ L , ∀q : prop , (∀ v ∈ SNoL x , ∀ w ∈ SNoL (y * z ) , u = v * (y * z ) + x * w + - v * w → q ) → (∀ v ∈ SNoR x , ∀ w ∈ SNoR (y * z ) , u = v * (y * z ) + x * w + - v * w → q ) → q ) → ∀ u ∈ L , u < (x * y ) * z
Axiom. (
mul_SNo_assoc_lem2 ) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → (∀ u ∈ SNoS_ (SNoLev x ) , u * (y * z ) = (u * y ) * z ) → (∀ v ∈ SNoS_ (SNoLev y ) , x * (v * z ) = (x * v ) * z ) → (∀ w ∈ SNoS_ (SNoLev z ) , x * (y * w ) = (x * y ) * w ) → (∀ u ∈ SNoS_ (SNoLev x ) , ∀ v ∈ SNoS_ (SNoLev y ) , u * (v * z ) = (u * v ) * z ) → (∀ u ∈ SNoS_ (SNoLev x ) , ∀ w ∈ SNoS_ (SNoLev z ) , u * (y * w ) = (u * y ) * w ) → (∀ v ∈ SNoS_ (SNoLev y ) , ∀ w ∈ SNoS_ (SNoLev z ) , x * (v * w ) = (x * v ) * w ) → (∀ u ∈ SNoS_ (SNoLev x ) , ∀ v ∈ SNoS_ (SNoLev y ) , ∀ w ∈ SNoS_ (SNoLev z ) , u * (v * w ) = (u * v ) * w ) → ∀R, (∀ u ∈ R , ∀q : prop , (∀ v ∈ SNoL x , ∀ w ∈ SNoR (y * z ) , u = v * (y * z ) + x * w + - v * w → q ) → (∀ v ∈ SNoR x , ∀ w ∈ SNoL (y * z ) , u = v * (y * z ) + x * w + - v * w → q ) → q ) → ∀ u ∈ R , (x * y ) * z < u
End of Section mul_SNo_assoc_lems
Axiom. (
SNo_foil ) We take the following as an axiom:
Axiom. (
SNo_foil_mm ) We take the following as an axiom:
End of Section SurrealMul
Beginning of Section SurrealExp
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Notation . We use
^ as an infix operator with priority 342 and which associates to the right corresponding to applying term
exp_SNo_nat .
Axiom. (
eps_bd_1 ) We take the following as an axiom:
Axiom. (
SNoS_finite ) We take the following as an axiom:
End of Section SurrealExp
Beginning of Section Int
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Primitive . The name
int is a term of type
set .
Axiom. (
int_3_cases ) We take the following as an axiom:
Axiom. (
int_SNo ) We take the following as an axiom:
Axiom. (
int_add_SNo ) We take the following as an axiom:
Axiom. (
int_mul_SNo ) We take the following as an axiom:
End of Section Int
Beginning of Section SurrealAbs
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Axiom. (
abs_SNo_0 ) We take the following as an axiom:
Axiom. (
pos_abs_SNo ) We take the following as an axiom:
Axiom. (
neg_abs_SNo ) We take the following as an axiom:
Axiom. (
SNo_abs_SNo ) We take the following as an axiom:
Axiom. (
abs_SNo_Lev ) We take the following as an axiom:
End of Section SurrealAbs
Beginning of Section SNoMaxMin
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Notation . We use
^ as an infix operator with priority 342 and which associates to the right corresponding to applying term
exp_SNo_nat .
Notation . We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt .
Notation . We use
≤ as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe .
End of Section SNoMaxMin
Beginning of Section DiadicRationals
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Notation . We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt .
Notation . We use
≤ as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe .
Notation . We use
^ as an infix operator with priority 342 and which associates to the right corresponding to applying term
exp_SNo_nat .
End of Section DiadicRationals
Beginning of Section SurrealDiv
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Notation . We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt .
Notation . We use
≤ as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe .
Notation . We use
^ as an infix operator with priority 342 and which associates to the right corresponding to applying term
exp_SNo_nat .
Definition. We define
SNo_recipauxset to be
λY x X g ⇒ ⋃ y ∈ Y { (1 + (x' + - x ) * y ) * g x' | x' ∈ X } of type
set → set → set → (set → set ) → set .
Beginning of Section recip_SNo_pos
End of Section recip_SNo_pos
Axiom. (
recip_SNo_0 ) We take the following as an axiom:
Axiom. (
recip_SNo_1 ) We take the following as an axiom:
Axiom. (
recip_SNo_2 ) We take the following as an axiom:
Notation . We use
:/: as an infix operator with priority 353 and no associativity corresponding to applying term
div_SNo .
Axiom. (
SNo_div_SNo ) We take the following as an axiom:
Axiom. (
div_div_SNo ) We take the following as an axiom:
End of Section SurrealDiv
Beginning of Section SurrealSqrt
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Notation . We use
:/: as an infix operator with priority 353 and no associativity corresponding to applying term
div_SNo .
Notation . We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt .
Notation . We use
≤ as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe .
Notation . We use
^ as an infix operator with priority 342 and which associates to the right corresponding to applying term
exp_SNo_nat .
Beginning of Section sqrt_SNo_nonneg
End of Section sqrt_SNo_nonneg
End of Section SurrealSqrt
Beginning of Section Reals
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Notation . We use
:/: as an infix operator with priority 353 and no associativity corresponding to applying term
div_SNo .
Notation . We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt .
Notation . We use
≤ as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe .
Notation . We use
^ as an infix operator with priority 342 and which associates to the right corresponding to applying term
exp_SNo_nat .
Primitive . The name
real is a term of type
set .
Axiom. (
real_I ) We take the following as an axiom:
Axiom. (
real_E ) We take the following as an axiom:
Axiom. (
real_SNo ) We take the following as an axiom:
Axiom. (
real_0 ) We take the following as an axiom:
Axiom. (
real_1 ) We take the following as an axiom:
Axiom. (
real_SNoCut ) We take the following as an axiom:
Axiom. (
SNo_approx_real_rep ) We take the following as an axiom:
∀ x ∈ real , ∀p : prop , (∀ f g ∈ SNoS_ ω ω , (∀ n ∈ ω , f n < x ) → (∀ n ∈ ω , x < f n + eps_ n ) → (∀ n ∈ ω , ∀ i ∈ n , f i < f n ) → (∀ n ∈ ω , g n + - eps_ n < x ) → (∀ n ∈ ω , x < g n ) → (∀ n ∈ ω , ∀ i ∈ n , g n < g i ) → SNoCutP { f n | n ∈ ω } { g n | n ∈ ω } → x = SNoCut { f n | n ∈ ω } { g n | n ∈ ω } → p ) → p
End of Section Reals
Proof: Let m be given.
rewrite the current goal using
mul_nat_0R m (from left to right).
∎
Proof: Let k be given.
Assume Hk .
Let m be given.
Assume Hm .
Let n be given.
Assume Hn .
Use symmetry.
∎
Proof: Let m be given.
Assume Hm .
Let n be given.
Assume Hn .
∎
Proof: Let m be given.
Assume Hm .
Let n be given.
Assume Hn .
rewrite the current goal using
mul_nat_SR n m Hm (from left to right).
rewrite the current goal using
mul_nat_com n Hn m Hm (from left to right).
∎
Proof: Let x0 of type set be given.
Let x1 of type set be given.
∎
Proof: Let x0 of type set be given.
∎
Proof: Let x0 of type set be given.
∎
Proof: Let x0 of type set be given.
∎
Definition. We define
even_nat to be
(λx0 : set ⇒ and (x0 ∈ ω ) (∀x1 : prop , (∀x2, and (x2 ∈ ω ) (x0 = mul_nat 2 x2 ) → x1 ) → x1 ) ) of type
set → prop .
Definition. We define
odd_nat to be
(λx0 : set ⇒ and (x0 ∈ ω ) (∀x1, x1 ∈ ω → x0 = mul_nat 2 x1 → (∀x2 : prop , x2 ) ) ) of type
set → prop .
Proof: Let x0 of type set be given.
∎
Theorem. (
odd_nat_1 ) The following is provable:
Proof: Let x0 of type set be given.
∎
Proof: Let x0 of type set be given.
∎
Proof: Let x0 of type set be given.
An
exact proof term for the current goal is
(H1 (even_nat x0 ) (λH2 : ordsucc (ordsucc x0 ) ∈ ω ⇒ (λH3 : (∃ x1, and (x1 ∈ ω ) (ordsucc (ordsucc x0 ) = mul_nat 2 x1 ) ) ⇒ (andI (x0 ∈ ω ) (∃ x1, and (x1 ∈ ω ) (x0 = mul_nat 2 x1 ) ) (nat_p_omega x0 H0 ) (H3 (∃ x1, and (x1 ∈ ω ) (x0 = mul_nat 2 x1 ) ) (λx1 : set ⇒ (λH4 : (λx2 : set ⇒ and (x2 ∈ ω ) (ordsucc (ordsucc x0 ) = mul_nat 2 x2 ) ) x1 ⇒ (H4 (∃ x2, and (x2 ∈ ω ) (x0 = mul_nat 2 x2 ) ) (λH5 : x1 ∈ ω ⇒ (λH6 : ordsucc (ordsucc x0 ) = mul_nat 2 x1 ⇒ (nat_inv x1 (omega_nat_p x1 H5 ) (∃ x2, and (x2 ∈ ω ) (x0 = mul_nat 2 x2 ) ) (λH7 : x1 = 0 ⇒ (neq_ordsucc_0 (ordsucc x0 ) ((λx2 x3 : set ⇒ (λH8 : (∀x4 : set → prop , x4 x3 → x4 x2 ) ⇒ (λx4 : set → set → prop ⇒ (H8 (λx5 : set ⇒ x4 x5 x3 → x4 x3 x5 ) (λH9 : x4 x3 x3 ⇒ H9 ) ) ) ) ) (ordsucc (ordsucc x0 ) ) 0 (λx2 : set → prop ⇒ (λH8 : x2 0 ⇒ (H6 (λx3 : set ⇒ x2 ) (H7 (λx3 x4 : set ⇒ mul_nat 2 x4 = 0 ) (mul_nat_0R 2 ) (λx3 : set ⇒ x2 ) H8 ) ) ) ) ) (∃ x2, and (x2 ∈ ω ) (x0 = mul_nat 2 x2 ) ) ) ) (λH7 : (∃ x2, and (nat_p x2 ) (x1 = ordsucc x2 ) ) ⇒ (H7 (∃ x2, and (x2 ∈ ω ) (x0 = mul_nat 2 x2 ) ) (λx2 : set ⇒ (λH8 : (λx3 : set ⇒ and (nat_p x3 ) (x1 = ordsucc x3 ) ) x2 ⇒ (H8 (∃ x3, and (x3 ∈ ω ) (x0 = mul_nat 2 x3 ) ) (λH9 : nat_p x2 ⇒ (λH10 : x1 = ordsucc x2 ⇒ (λx3 : prop ⇒ (λH11 : (∀x4, and (x4 ∈ ω ) (x0 = mul_nat 2 x4 ) → x3 ) ⇒ (H11 x2 (andI (x2 ∈ ω ) (x0 = mul_nat 2 x2 ) (nat_p_omega x2 H9 ) (ordsucc_inj x0 (mul_nat 2 x2 ) (ordsucc_inj (ordsucc x0 ) (ordsucc (mul_nat 2 x2 ) ) (H6 (λx4 x5 : set ⇒ x5 = ordsucc (ordsucc (mul_nat 2 x2 ) ) ) (H10 (λx4 x5 : set ⇒ mul_nat 2 x5 = ordsucc (ordsucc (mul_nat 2 x2 ) ) ) (mul_nat_SR 2 x2 H9 (λx4 x5 : set ⇒ x5 = ordsucc (ordsucc (mul_nat 2 x2 ) ) ) ((λH12 : nat_p (mul_nat 2 x2 ) ⇒ (add_nat_SL 1 nat_1 (mul_nat 2 x2 ) H12 (λx4 x5 : set ⇒ x5 = ordsucc (ordsucc (mul_nat 2 x2 ) ) ) ((λx4 x5 : set ⇒ (λH13 : (∀x6 : set → prop , x6 x5 → x6 x4 ) ⇒ (λx6 : set → set → prop ⇒ (H13 (λx7 : set ⇒ x6 x7 x5 → x6 x5 x7 ) (λH14 : x6 x5 x5 ⇒ H14 ) ) ) ) ) (ordsucc (add_nat 1 (mul_nat 2 x2 ) ) ) (ordsucc (ordsucc (mul_nat 2 x2 ) ) ) (λx4 : set → prop ⇒ (λH13 : x4 (ordsucc (ordsucc (mul_nat 2 x2 ) ) ) ⇒ ((λx5 : set → set → prop ⇒ (add_nat_SL 0 nat_0 (mul_nat 2 x2 ) H12 (λx6 x7 : set ⇒ x7 = ordsucc (mul_nat 2 x2 ) ) ((λx6 x7 : set ⇒ (λH14 : (∀x8 : set → prop , x8 x7 → x8 x6 ) ⇒ (λx8 : set → set → prop ⇒ (H14 (λx9 : set ⇒ x8 x9 x7 → x8 x7 x9 ) (λH15 : x8 x7 x7 ⇒ H15 ) ) ) ) ) (ordsucc (add_nat 0 (mul_nat 2 x2 ) ) ) (ordsucc (mul_nat 2 x2 ) ) (λx6 : set → prop ⇒ (λH14 : x6 (ordsucc (mul_nat 2 x2 ) ) ⇒ ((λx7 : set → set → prop ⇒ (add_nat_0L (mul_nat 2 x2 ) H12 (λx8 x9 : set ⇒ x7 (ordsucc x8 ) (ordsucc x9 ) ) ) ) (λx7 : set ⇒ x6 ) H14 ) ) ) ) (λx6 x7 : set ⇒ x5 (ordsucc x6 ) (ordsucc x7 ) ) ) ) (λx5 : set ⇒ x4 ) H13 ) ) ) ) ) ) (mul_nat_p 2 nat_2 x2 H9 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) .
∎
Proof: Let x0 of type set be given.
∎
Proof: Let x0 of type set be given.
∎
Proof: Let x0 of type set be given.
∎
Proof: Let x0 of type set be given.
∎
Proof: Let x0 and x1 of type set be given.
∎
Proof: Let x0 of type set be given.
Let x1 of type set be given.
∎
Proof: Let x0 of type set be given.
Let x1 of type set be given.
∎
Proof: Let x0 of type set be given.
Let x1 of type set be given.
∎
Notation . We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo .
Notation . We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo .
Notation . We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo .
Notation . We use
:/: as an infix operator with priority 353 and no associativity corresponding to applying term
div_SNo .
Proof:
An
exact proof term for the current goal is
SNoLt_0_2 .
Apply H3 to the current goal.
Let m be given.
Assume H .
Apply H to the current goal.
Assume H .
Apply H to the current goal.
Let n be given.
Assume H .
Apply H to the current goal.
We prove the intermediate
claim LmS :
SNo m .
An
exact proof term for the current goal is
int_SNo m Hm .
We prove the intermediate
claim Ln :
n ∈ ω .
We prove the intermediate
claim LnS :
SNo n .
An
exact proof term for the current goal is
omega_SNo n Ln .
An
exact proof term for the current goal is
SNo_2 .
An
exact proof term for the current goal is
SNoLt_0_2 .
rewrite the current goal using H4 (from left to right).
We will
prove (m :/: n ) * n = m .
An exact proof term for the current goal is LmS .
An exact proof term for the current goal is LnS .
rewrite the current goal using Hn0 (from left to right).
Apply SingI to the current goal.
An
exact proof term for the current goal is
SNo_2 .
An
exact proof term for the current goal is
SNoLt_0_2 .
We prove the intermediate
claim L3 :
0 < n .
An exact proof term for the current goal is H5 .
rewrite the current goal using H5 (from right to left).
Apply SingI to the current goal.
Use f_equal.
An
exact proof term for the current goal is
SNo_2 .
An
exact proof term for the current goal is
SNoLt_0_2 .
Let k be given.
rewrite the current goal using H4 (from left to right).
We will
prove m :/: n < 0 .
We prove the intermediate
claim LkS :
SNo k .
An
exact proof term for the current goal is
omega_SNo k Hk .
We prove the intermediate
claim LSkS :
SNo (ordsucc k ) .
rewrite the current goal using HmSk (from left to right).
rewrite the current goal using
minus_SNo_0 (from left to right).
rewrite the current goal using
add_SNo_0R 1 SNo_1 (from right to left) at position 1.
An
exact proof term for the current goal is
omega_nonneg k Hk .
An exact proof term for the current goal is L3 .
rewrite the current goal using Hm0 (from right to left) at position 2.
An exact proof term for the current goal is L1 .
We prove the intermediate
claim L6 :
2 * (n * n ) = 0 .
rewrite the current goal using L4 (from right to left).
rewrite the current goal using L5 (from left to right).
rewrite the current goal using L6 (from right to left) at position 2.
We will
prove 0 < 2 * (n * n ) .
An
exact proof term for the current goal is
mul_SNo_pos_pos n n LnS LnS L3 L3 .
Let k be given.
We prove the intermediate
claim Lm :
m ∈ ω .
rewrite the current goal using HmSk (from left to right).
An exact proof term for the current goal is Hk .
We prove the intermediate
claim Lm1 :
m ∈ ω ∖ 1 .
An exact proof term for the current goal is Lm .
rewrite the current goal using HmSk (from right to left).
An
exact proof term for the current goal is
cases_1 m H5 (λi ⇒ i = 0 ) (λq H ⇒ H ) .
We prove the intermediate
claim Ln1 :
n ∈ ω ∖ 1 .
rewrite the current goal using
eq_1_Sing0 (from left to right).
An exact proof term for the current goal is Hn .
rewrite the current goal using
mul_nat_mul_SNo m Lm m Lm (from left to right).
rewrite the current goal using
mul_nat_mul_SNo n Ln n Ln (from left to right).
We will
prove m * m = 2 * (n * n ) .
rewrite the current goal using L1 (from right to left).
An exact proof term for the current goal is L4 .
∎