Beginning of Section Reals
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use :/: as an infix operator with priority 353 and no associativity corresponding to applying term div_SNo.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Theorem. (SNoS_omega_drat_intvl)
∀xSNoS_ ω, ∀kω, ∃q ∈ SNoS_ ω, q < xx < q + eps_ k
Proof:
Proof not loaded.
Theorem. (SNoS_ordsucc_omega_bdd_above)
∀xSNoS_ (ordsucc ω), x < ω∃N ∈ ω, x < N
Proof:
Proof not loaded.
Theorem. (SNoS_ordsucc_omega_bdd_below)
∀xSNoS_ (ordsucc ω), - ω < x∃N ∈ ω, - N < x
Proof:
Proof not loaded.
Theorem. (SNoS_ordsucc_omega_bdd_drat_intvl)
∀xSNoS_ (ordsucc ω), - ω < xx < ω∀kω, ∃q ∈ SNoS_ ω, q < xx < q + eps_ k
Proof:
Proof not loaded.
Definition. We define real to be {x ∈ SNoS_ (ordsucc ω)|xωx- ω(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)} of type set.
Definition. We define rational to be {x ∈ real|∃m ∈ int, ∃n ∈ ω{0}, x = m :/: n} of type set.
Theorem. (real_I)
∀xSNoS_ (ordsucc ω), xωx- ω(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)x real
Proof:
Proof not loaded.
Theorem. (real_E)
∀xreal, ∀p : prop, (SNo xSNoLev x ordsucc ωx SNoS_ (ordsucc ω)- ω < xx < ω(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀kω, ∃q ∈ SNoS_ ω, q < xx < q + eps_ k)p)p
Proof:
Proof not loaded.
Theorem. (real_SNo)
∀xreal, SNo x
Proof:
Proof not loaded.
Theorem. (real_SNoS_omega_prop)
∀xreal, ∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x
Proof:
Proof not loaded.
Theorem. (SNoS_omega_real)
SNoS_ ω real
Proof:
Proof not loaded.
Theorem. (real_0)
Proof:
Proof not loaded.
Theorem. (real_1)
Proof:
Proof not loaded.
Theorem. (SNoLev_In_real_SNoS_omega)
∀xreal, ∀w, SNo wSNoLev w SNoLev xw SNoS_ ω
Proof:
Proof not loaded.
Theorem. (real_SNoCut_SNoS_omega)
∀L RSNoS_ ω, SNoCutP L RL0R0(∀wL, ∃w' ∈ L, w < w')(∀zR, ∃z' ∈ R, z' < z)SNoCut L R real
Proof:
Proof not loaded.
Theorem. (real_SNoCut)
∀L Rreal, SNoCutP L RL0R0(∀wL, ∃w' ∈ L, w < w')(∀zR, ∃z' ∈ R, z' < z)SNoCut L R real
Proof:
Proof not loaded.
Theorem. (minus_SNo_prereal_1)
∀x, SNo x(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀qSNoS_ ω, (∀kω, abs_SNo (q + - - x) < eps_ k)q = - x)
Proof:
Proof not loaded.
Theorem. (minus_SNo_prereal_2)
∀x, SNo x(∀kω, ∃q ∈ SNoS_ ω, q < xx < q + eps_ k)(∀kω, ∃q ∈ SNoS_ ω, q < - x- x < q + eps_ k)
Proof:
Proof not loaded.
Theorem. (SNo_prereal_incr_lower_pos)
∀x, SNo x0 < x(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀kω, ∃q ∈ SNoS_ ω, q < xx < q + eps_ k)∀kω, ∀p : prop, (∀qSNoS_ ω, 0 < qq < xx < q + eps_ kp)p
Proof:
Proof not loaded.
Theorem. (real_minus_SNo)
Proof:
Proof not loaded.
Theorem. (SNo_prereal_incr_lower_approx)
∀x, SNo x(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀kω, ∃q ∈ SNoS_ ω, q < xx < q + eps_ k)∃f ∈ SNoS_ ωω, ∀nω, f n < xx < f n + eps_ n∀in, f i < f n
Proof:
Proof not loaded.
Theorem. (SNo_prereal_decr_upper_approx)
∀x, SNo x(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀kω, ∃q ∈ SNoS_ ω, q < xx < q + eps_ k)∃g ∈ SNoS_ ωω, ∀nω, g n + - eps_ n < xx < g n∀in, g n < g i
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_lim)
∀lambda, ordinal lambda(∀alphalambda, ordsucc alpha lambda)∀L RSNoS_ lambda, SNoCutP L RSNoLev (SNoCut L R) ordsucc lambda
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_omega)
∀L RSNoS_ ω, SNoCutP L RSNoLev (SNoCut L R) ordsucc ω
Proof:
Proof not loaded.
Theorem. (SNo_approx_real_lem)
∀f gSNoS_ ωω, (∀n mω, f n < g m)∀p : prop, (SNoCutP {f n|n ∈ ω} {g n|n ∈ ω}SNo (SNoCut {f n|n ∈ ω} {g n|n ∈ ω})SNoLev (SNoCut {f n|n ∈ ω} {g n|n ∈ ω}) ordsucc ωSNoCut {f n|n ∈ ω} {g n|n ∈ ω} SNoS_ (ordsucc ω)(∀nω, f n < SNoCut {f n|n ∈ ω} {g n|n ∈ ω})(∀nω, SNoCut {f n|n ∈ ω} {g n|n ∈ ω} < g n)p)p
Proof:
Proof not loaded.
Theorem. (SNo_approx_real)
∀x, SNo x∀f gSNoS_ ωω, (∀nω, f n < x)(∀nω, x < f n + eps_ n)(∀nω, ∀in, f i < f n)(∀nω, x < g n)(∀nω, ∀in, g n < g i)x = SNoCut {f n|n ∈ ω} {g n|n ∈ ω}x real
Proof:
Proof not loaded.
Theorem. (SNo_approx_real_rep)
∀xreal, ∀p : prop, (∀f gSNoS_ ωω, (∀nω, f n < x)(∀nω, x < f n + eps_ n)(∀nω, ∀in, f i < f n)(∀nω, g n + - eps_ n < x)(∀nω, x < g n)(∀nω, ∀in, g n < g i)SNoCutP {f n|n ∈ ω} {g n|n ∈ ω}x = SNoCut {f n|n ∈ ω} {g n|n ∈ ω}p)p
Proof:
Proof not loaded.
Theorem. (real_add_SNo)
∀x yreal, x + y real
Proof:
Proof not loaded.
Theorem. (SNoS_ordsucc_omega_bdd_eps_pos)
∀xSNoS_ (ordsucc ω), 0 < xx < ω∃N ∈ ω, eps_ N * x < 1
Proof:
Proof not loaded.
Theorem. (real_mul_SNo_pos)
∀x yreal, 0 < x0 < yx * y real
Proof:
Proof not loaded.
Theorem. (real_mul_SNo)
∀x yreal, x * y real
Proof:
Proof not loaded.
Theorem. (abs_SNo_intvl_bd)
∀x y z, SNo xSNo ySNo zx yy < x + zabs_SNo (y + - x) < z
Proof:
Proof not loaded.
Theorem. (nonneg_real_nat_interval)
∀xreal, 0 x∃n ∈ ω, n xx < ordsucc n
Proof:
Proof not loaded.
Theorem. (pos_real_left_approx_double)
∀xreal, 0 < xx2(∀mω, xeps_ m)∃w ∈ SNoL_pos x, x < 2 * w
Proof:
Proof not loaded.
Theorem. (real_recip_SNo_lem1)
∀x, SNo xx real0 < xrecip_SNo_pos x real∀k, nat_p k(SNo_recipaux x recip_SNo_pos k 0 real)(SNo_recipaux x recip_SNo_pos k 1 real)
Proof:
Proof not loaded.
Theorem. (real_recip_SNo_pos)
∀xreal, 0 < xrecip_SNo_pos x real
Proof:
Proof not loaded.
Theorem. (real_recip_SNo)
∀xreal, recip_SNo x real
Proof:
Proof not loaded.
Theorem. (real_div_SNo)
∀x yreal, x :/: y real
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_0inL0)
∀x, SNo x0 x0 SNoLev x0 SNo_sqrtaux x sqrt_SNo_nonneg 0 0
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_Lnonempty)
∀x, SNo x0 x0 SNoLev x(k ∈ ωSNo_sqrtaux x sqrt_SNo_nonneg k 0)0
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_Rnonempty)
∀x, SNo x0 x1 SNoLev x(k ∈ ωSNo_sqrtaux x sqrt_SNo_nonneg k 1)0
Proof:
Proof not loaded.
Theorem. (SNo_sqrtauxset_real)
∀Y Z x, Y realZ realx realSNo_sqrtauxset Y Z x real
Proof:
Proof not loaded.
Theorem. (SNo_sqrtauxset_real_nonneg)
∀Y Z x, Y {w ∈ real|0 w}Z {z ∈ real|0 z}x real0 xSNo_sqrtauxset Y Z x {w ∈ real|0 w}
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_SNoS_omega)
∀xSNoS_ ω, 0 xsqrt_SNo_nonneg x real
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_real)
∀xreal, 0 xsqrt_SNo_nonneg x real
Proof:
Proof not loaded.
Theorem. (real_Archimedean)
∀x yreal, 0 < x0 y∃n ∈ ω, y n * x
Proof:
Proof not loaded.
Theorem. (real_complete1)
∀a brealω, (∀nω, a n b na n a (ordsucc n)b (ordsucc n) b n)∃x ∈ real, ∀nω, a n xx b n
Proof:
Proof not loaded.
Theorem. (real_complete2)
∀a brealω, (∀nω, a n b na n a (n + 1)b (n + 1) b n)∃x ∈ real, ∀nω, a n xx b n
Proof:
Proof not loaded.
End of Section Reals