In Proofgold the corresponding term root is 3c4f59... and proposition id is 3bf198...
Definition. We define iff to be λA B : prop ⇒ (A → B)∧(B → A) of type prop → prop → prop.
In Proofgold the corresponding term root is 98aaaf... and object id is 6588e5...
Notation. We use ↔ as an infix operator with priority 805 and no associativity corresponding to applying term iff.
Beginning of Section Eq
Variable A : SType
Definition. We define eq to be λx y : A ⇒ ∀Q : A → A → prop, Qxy → Qyx of type A → A → prop.
End of Section Eq
Notation. We use = as an infix operator with priority 502 and no associativity corresponding to applying term eq.
Beginning of Section Ex
Variable A : SType
Definition. We define ex to be λQ : A → prop ⇒ ∀P : prop, (∀x : A, Qx → P) → P of type (A → prop) → prop.
End of Section Ex
Notation. We use ∃ x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using ex.
Primitive. The name In is a term of type set → set → prop.
Notation. We use ∈ as an infix operator with priority 500 and no associativity corresponding to applying term In. Furthermore, we may write ∀ x ∈ A, B to mean ∀ x : set, x ∈ A → B.
In Proofgold the corresponding term root is 3cfb35... and proposition id is c6620b...
Primitive. The name MetaFunctor is a term of type (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → set) → (set → set → set → set) → prop.
In Proofgold the corresponding term root is f35b67... and object id is c80743...
Axiom. (MetaFunctor_I) We take the following as an axiom:
∀C0 : set → prop, ∀C1 : set → set → set → prop, ∀idC : set → set, ∀compC : set → set → set → set → set → set, ∀D0 : set → prop, ∀D1 : set → set → set → prop, ∀idD : set → set, ∀compD : set → set → set → set → set → set, ∀F0 : set → set, ∀F1 : set → set → set → set, (∀X, C0X → D0(F0X)) → (∀X Y f, C0X → C0Y → C1XYf → D1(F0X)(F0Y)(F1XYf)) → (∀X, C0X → F1XX(idCX)=idD(F0X)) → (∀X Y Z f g, C0X → C0Y → C0Z → C1XYf → C1YZg → F1XZ(compCXYZgf)=compD(F0X)(F0Y)(F0Z)(F1YZg)(F1XYf)) → MetaFunctorC0C1idCcompCD0D1idDcompDF0F1
In Proofgold the corresponding term root is 795e29... and proposition id is 2cb62d...
In Proofgold the corresponding term root is 347730... and proposition id is c7aa16...
Primitive. The name MetaFunctor_strict is a term of type (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → set) → (set → set → set → set) → prop.
In Proofgold the corresponding term root is 8085cf... and object id is 070aeb...
∀C0 : set → prop, ∀C1 : set → set → set → prop, ∀idC : set → set, ∀compC : set → set → set → set → set → set, ∀D0 : set → prop, ∀D1 : set → set → set → prop, ∀idD : set → set, ∀compD : set → set → set → set → set → set, ∀F0 : set → set, ∀F1 : set → set → set → set, MetaCatC0C1idCcompC → MetaCatD0D1idDcompD → MetaFunctorC0C1idCcompCD0D1idDcompDF0F1 → MetaFunctor_strictC0C1idCcompCD0D1idDcompDF0F1
In Proofgold the corresponding term root is 3d0579... and proposition id is 5cbb4a...
Primitive. The name MetaNatTrans is a term of type (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → set) → (set → set → set → set) → (set → set) → (set → set → set → set) → (set → set) → prop.
In Proofgold the corresponding term root is cf0ad1... and object id is 08be86...
Axiom. (MetaNatTrans_I) We take the following as an axiom:
∀C0 : set → prop, ∀C1 : set → set → set → prop, ∀idC : set → set, ∀compC : set → set → set → set → set → set, ∀D0 : set → prop, ∀D1 : set → set → set → prop, ∀idD : set → set, ∀compD : set → set → set → set → set → set, ∀F0 : set → set, ∀F1 : set → set → set → set, ∀G0 : set → set, ∀G1 : set → set → set → set, ∀eta : set → set, (∀X, C0X → D1(F0X)(G0X)(etaX)) → (∀X Y f, C0X → C0Y → C1XYf → compD(F0X)(G0X)(G0Y)(G1XYf)(etaX)=compD(F0X)(F0Y)(G0Y)(etaY)(F1XYf)) → MetaNatTransC0C1idCcompCD0D1idDcompDF0F1G0G1eta
In Proofgold the corresponding term root is 8286b8... and proposition id is c1d681...
Primitive. The name MetaAdjunction is a term of type (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → set) → (set → set → set → set) → (set → set) → (set → set → set → set) → (set → set) → (set → set) → prop.
In Proofgold the corresponding term root is e8b6c4... and object id is bda632...
∀C0 : set → prop, ∀C1 : set → set → set → prop, ∀idC : set → set, ∀compC : set → set → set → set → set → set, ∀D0 : set → prop, ∀D1 : set → set → set → prop, ∀idD : set → set, ∀compD : set → set → set → set → set → set, ∀F0 : set → set, ∀F1 : set → set → set → set, ∀G0 : set → set, ∀G1 : set → set → set → set, ∀eta eps : set → set, (∀X, C0X → compD(F0X)(F0(G0(F0X)))(F0X)(eps(F0X))(F1X(G0(F0X))(etaX))=idD(F0X)) → (∀Y, D0Y → compC(G0Y)(G0(F0(G0Y)))(G0Y)(G1(F0(G0Y))Y(epsY))(eta(G0Y))=idC(G0Y)) → MetaAdjunctionC0C1idCcompCD0D1idDcompDF0F1G0G1etaeps
In Proofgold the corresponding term root is 1ed388... and proposition id is fd4945...
Primitive. The name MetaAdjunction_strict is a term of type (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → prop) → (set → set → set → prop) → (set → set) → (set → set → set → set → set → set) → (set → set) → (set → set → set → set) → (set → set) → (set → set → set → set) → (set → set) → (set → set) → prop.
In Proofgold the corresponding term root is c8ed7d... and object id is 3ab943...
∀C0 : set → prop, ∀C1 : set → set → set → prop, ∀idC : set → set, ∀compC : set → set → set → set → set → set, ∀D0 : set → prop, ∀D1 : set → set → set → prop, ∀idD : set → set, ∀compD : set → set → set → set → set → set, ∀F0 : set → set, ∀F1 : set → set → set → set, ∀G0 : set → set, ∀G1 : set → set → set → set, ∀eta eps : set → set, MetaFunctor_strictC0C1idCcompCD0D1idDcompDF0F1 → MetaFunctorD0D1idDcompDC0C1idCcompCG0G1 → MetaNatTransC0C1idCcompCC0C1idCcompC(λX : set ⇒ X)(λX Y f : set ⇒ f)(λX : set ⇒ G0(F0X))(λX Y f : set ⇒ G1(F0X)(F0Y)(F1XYf))eta → MetaNatTransD0D1idDcompDD0D1idDcompD(λA : set ⇒ F0(G0A))(λA B h : set ⇒ F1(G0A)(G0B)(G1ABh))(λA : set ⇒ A)(λA B h : set ⇒ h)eps → MetaAdjunctionC0C1idCcompCD0D1idDcompDF0F1G0G1etaeps → MetaAdjunction_strictC0C1idCcompCD0D1idDcompDF0F1G0G1etaeps
In Proofgold the corresponding term root is 712520... and proposition id is d6aa5e...